v0.14.0
Loading...
Searching...
No Matches
ContactOps.hpp
/**
* \file ContactOps.hpp
* \example ContactOps.hpp
*/
#ifndef __CONTACTOPS_HPP__
#define __CONTACTOPS_HPP__
namespace ContactOps {
//! [Common data]
struct CommonData : public boost::enable_shared_from_this<CommonData> {
// MatrixDouble contactStress;
MatrixDouble contactTraction;
MatrixDouble contactDisp;
VectorDouble sdfVals; ///< size is equal to number of gauss points on element
MatrixDouble gradsSdf; ///< nb of rows is equals to dimension, and nb of cols
///< is equals to number of gauss points on element
MatrixDouble hessSdf; ///< nb of rows is equals to nb of element of symmetric
///< matrix, and nb of cols is equals to number of gauss
///< points on element
static SmartPetscObj<Vec>
totalTraction; // User have to release and create vector when appropiate.
static auto createTotalTraction(MoFEM::Interface &m_field) {
constexpr int ghosts[] = {0, 1, 2};
createGhostVector(m_field.get_comm(),
(m_field.get_comm_rank() == 0) ? 3 : 0, 3,
(m_field.get_comm_rank() == 0) ? 0 : 3, ghosts);
return totalTraction;
}
static auto getFTensor1TotalTraction() {
const double *t_ptr;
CHK_THROW_MESSAGE(VecGetArrayRead(CommonData::totalTraction, &t_ptr),
"get array");
FTensor::Tensor1<double, 3> t{t_ptr[0], t_ptr[1], t_ptr[2]};
CHK_THROW_MESSAGE(VecRestoreArrayRead(CommonData::totalTraction, &t_ptr),
"restore array");
return t;
} else {
return FTensor::Tensor1<double, 3>{0., 0., 0.};
}
}
inline auto contactTractionPtr() {
return boost::shared_ptr<MatrixDouble>(shared_from_this(),
}
inline auto contactDispPtr() {
return boost::shared_ptr<MatrixDouble>(shared_from_this(), &contactDisp);
}
inline auto sdfPtr() {
return boost::shared_ptr<VectorDouble>(shared_from_this(), &sdfVals);
}
inline auto gradSdfPtr() {
return boost::shared_ptr<MatrixDouble>(shared_from_this(), &gradsSdf);
}
inline auto hessSdfPtr() {
return boost::shared_ptr<MatrixDouble>(shared_from_this(), &hessSdf);
}
};
SmartPetscObj<Vec> CommonData::totalTraction;
//! [Common data]
//! [Surface distance function from python]
#ifdef PYTHON_SDF
struct SDFPython {
SDFPython() = default;
virtual ~SDFPython() = default;
MoFEMErrorCode sdfInit(const std::string py_file) {
try {
// create main module
auto main_module = bp::import("__main__");
mainNamespace = main_module.attr("__dict__");
bp::exec_file(py_file.c_str(), mainNamespace, mainNamespace);
// create a reference to python function
sdfFun = mainNamespace["sdf"];
sdfGradFun = mainNamespace["grad_sdf"];
sdfHessFun = mainNamespace["hess_sdf"];
} catch (bp::error_already_set const &) {
// print all other errors to stderr
PyErr_Print();
}
};
template <typename T>
inline std::vector<T>
py_list_to_std_vector(const boost::python::object &iterable) {
return std::vector<T>(boost::python::stl_input_iterator<T>(iterable),
boost::python::stl_input_iterator<T>());
}
MoFEMErrorCode evalSdf(
double t, double x, double y, double z, double tx, double ty, double tz,
double &sdf
) {
try {
// call python function
sdf = bp::extract<double>(sdfFun(t, x, y, z, tx, ty, tz));
} catch (bp::error_already_set const &) {
// print all other errors to stderr
PyErr_Print();
}
}
MoFEMErrorCode evalGradSdf(
double t, double x, double y, double z, double tx, double ty, double tz,
std::vector<double> &grad_sdf
) {
try {
// call python function
grad_sdf =
py_list_to_std_vector<double>(sdfGradFun(t, x, y, z, tx, ty, tz));
} catch (bp::error_already_set const &) {
// print all other errors to stderr
PyErr_Print();
}
if (grad_sdf.size() != 3) {
SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY, "Expected size 3");
}
}
MoFEMErrorCode evalHessSdf(
double t, double x, double y, double z, double tx, double ty, double tz,
std::vector<double> &hess_sdf
) {
try {
// call python function
hess_sdf =
py_list_to_std_vector<double>(sdfHessFun(t, x, y, z, tx, ty, tz));
} catch (bp::error_already_set const &) {
// print all other errors to stderr
PyErr_Print();
}
if (hess_sdf.size() != 6) {
SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY, "Expected size 6");
}
}
private:
bp::object mainNamespace;
bp::object sdfFun;
bp::object sdfGradFun;
bp::object sdfHessFun;
};
static boost::weak_ptr<SDFPython> sdfPythonWeakPtr;
#endif
//! [Surface distance function from python]
using SurfaceDistanceFunction = boost::function<double(
double t, double x, double y, double z, double tx, double ty, double tz)>;
using GradSurfaceDistanceFunction = boost::function<FTensor::Tensor1<double, 3>(
double t, double x, double y, double z, double tx, double ty, double tz)>;
boost::function<FTensor::Tensor2_symmetric<double, 3>(
double t, double x, double y, double z, double tx, double ty,
double tz)>;
inline double surface_distance_function(double t, double x, double y, double z,
double tx, double ty, double tz) {
#ifdef PYTHON_SDF
if (auto sdf_ptr = sdfPythonWeakPtr.lock()) {
double sdf;
CHK_MOAB_THROW(sdf_ptr->evalSdf(t, x, y, z, tx, ty, tz, sdf),
"Failed python call");
return sdf;
}
#endif
return y + 0.5;
}
grad_surface_distance_function(double t, double x, double y, double z,
double tx, double ty, double tz) {
#ifdef PYTHON_SDF
if (auto sdf_ptr = sdfPythonWeakPtr.lock()) {
std::vector<double> grad_sdf;
CHK_MOAB_THROW(sdf_ptr->evalGradSdf(t, x, y, z, tx, ty, tz, grad_sdf),
"Failed python call");
return FTensor::Tensor1<double, 3>{grad_sdf[0], grad_sdf[1], grad_sdf[2]};
}
#endif
return FTensor::Tensor1<double, 3>{0., 1., 0.};
}
hess_surface_distance_function(double t, double x, double y, double z,
double tx, double ty, double tz) {
#ifdef PYTHON_SDF
if (auto sdf_ptr = sdfPythonWeakPtr.lock()) {
std::vector<double> hess_sdf;
CHK_MOAB_THROW(sdf_ptr->evalHessSdf(t, x, y, z, tx, ty, tz, hess_sdf),
"Failed python call");
return FTensor::Tensor2_symmetric<double, 3>{hess_sdf[0], hess_sdf[1],
hess_sdf[2], hess_sdf[3],
hess_sdf[4], hess_sdf[5]};
}
#endif
return FTensor::Tensor2_symmetric<double, 3>{0., 0., 0., 0., 0., 0.};
}
template <int DIM, IntegrationType I, typename BoundaryEleOp>
struct OpAssembleTotalContactTractionImpl;
template <int DIM, IntegrationType I, typename BoundaryEleOp>
struct OpEvaluateSDFImpl;
template <int DIM, IntegrationType I, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryRhsImpl;
template <int DIM, IntegrationType I, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryLhs_dUImpl;
template <int DIM, IntegrationType I, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryLhs_dTractionImpl;
template <int DIM, typename BoundaryEleOp>
struct OpAssembleTotalContactTractionImpl<DIM, GAUSS, BoundaryEleOp>
: public BoundaryEleOp {
OpAssembleTotalContactTractionImpl(
boost::shared_ptr<CommonData> common_data_ptr, double scale = 1);
MoFEMErrorCode doWork(int side, EntityType type, EntData &data);
private:
boost::shared_ptr<CommonData> commonDataPtr;
const double scaleTraction;
};
template <int DIM, typename BoundaryEleOp>
struct OpEvaluateSDFImpl<DIM, GAUSS, BoundaryEleOp> : public BoundaryEleOp {
OpEvaluateSDFImpl(boost::shared_ptr<CommonData> common_data_ptr);
MoFEMErrorCode doWork(int side, EntityType type, EntData &data);
private:
boost::shared_ptr<CommonData> commonDataPtr;
GradSurfaceDistanceFunction gradSurfaceDistanceFunction =
HessSurfaceDistanceFunction hessSurfaceDistanceFunction =
};
template <int DIM, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryRhsImpl<DIM, GAUSS, AssemblyBoundaryEleOp>
OpConstrainBoundaryRhsImpl(const std::string field_name,
boost::shared_ptr<CommonData> common_data_ptr);
MoFEMErrorCode iNtegrate(EntitiesFieldData::EntData &data);
GradSurfaceDistanceFunction gradSurfaceDistanceFunction =
private:
boost::shared_ptr<CommonData> commonDataPtr;
};
template <int DIM, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryLhs_dUImpl<DIM, GAUSS, AssemblyBoundaryEleOp>
OpConstrainBoundaryLhs_dUImpl(const std::string row_field_name,
const std::string col_field_name,
boost::shared_ptr<CommonData> common_data_ptr);
MoFEMErrorCode iNtegrate(EntitiesFieldData::EntData &row_data,
EntitiesFieldData::EntData &col_data);
GradSurfaceDistanceFunction gradSurfaceDistanceFunction =
HessSurfaceDistanceFunction hessSurfaceDistanceFunction =
boost::shared_ptr<CommonData> commonDataPtr;
};
template <int DIM, typename AssemblyBoundaryEleOp>
struct OpConstrainBoundaryLhs_dTractionImpl<DIM, GAUSS, AssemblyBoundaryEleOp>
OpConstrainBoundaryLhs_dTractionImpl(
const std::string row_field_name, const std::string col_field_name,
boost::shared_ptr<CommonData> common_data_ptr);
MoFEMErrorCode iNtegrate(EntitiesFieldData::EntData &row_data,
EntitiesFieldData::EntData &col_data);
GradSurfaceDistanceFunction gradSurfaceDistanceFunction =
private:
boost::shared_ptr<CommonData> commonDataPtr;
};
template <typename BoundaryEleOp> struct ContactIntegrators {
template <int DIM, IntegrationType I>
OpAssembleTotalContactTractionImpl<DIM, I, BoundaryEleOp>;
template <int DIM, IntegrationType I>
using OpEvaluateSDF = OpEvaluateSDFImpl<DIM, I, BoundaryEleOp>;
template <AssemblyType A> struct Assembly {
typename FormsIntegrators<BoundaryEleOp>::template Assembly<A>::OpBase;
template <int DIM, IntegrationType I>
OpConstrainBoundaryRhsImpl<DIM, I, AssemblyBoundaryEleOp>;
template <int DIM, IntegrationType I>
OpConstrainBoundaryLhs_dUImpl<DIM, I, AssemblyBoundaryEleOp>;
template <int DIM, IntegrationType I>
OpConstrainBoundaryLhs_dTractionImpl<DIM, I, AssemblyBoundaryEleOp>;
};
};
inline double sign(double x) {
if (x == 0)
return 0;
else if (x > 0)
return 1;
else
return -1;
};
inline double w(const double sdf, const double tn) {
return sdf - cn_contact * tn;
}
/**
* @brief constrain function
*
* return 1 if negative sdn or positive tn
*
* @param sdf signed distance
* @param tn traction
* @return double
*/
inline double constrain(double sdf, double tn) {
const auto s = sign(w(sdf, tn));
return (1 - s) / 2;
}
template <int DIM, typename BoundaryEleOp>
OpAssembleTotalContactTractionImpl<DIM, GAUSS, BoundaryEleOp>::
OpAssembleTotalContactTractionImpl(
boost::shared_ptr<CommonData> common_data_ptr, double scale)
commonDataPtr(common_data_ptr), scaleTraction(scale) {}
template <int DIM, typename BoundaryEleOp>
MoFEMErrorCode
OpAssembleTotalContactTractionImpl<DIM, GAUSS, BoundaryEleOp>::doWork(
int side, EntityType type, EntData &data) {
FTensor::Tensor1<double, 3> t_sum_t{0., 0., 0.};
auto t_traction = getFTensor1FromMat<DIM>(commonDataPtr->contactTraction);
const auto nb_gauss_pts = BoundaryEleOp::getGaussPts().size2();
for (auto gg = 0; gg != nb_gauss_pts; ++gg) {
const double alpha = t_w * BoundaryEleOp::getMeasure();
t_sum_t(i) += alpha * t_traction(i);
++t_w;
++t_traction;
}
t_sum_t(i) *= scaleTraction;
constexpr int ind[] = {0, 1, 2};
CHKERR VecSetValues(commonDataPtr->totalTraction, 3, ind, &t_sum_t(0),
ADD_VALUES);
}
template <int DIM, typename BoundaryEleOp>
OpEvaluateSDFImpl<DIM, GAUSS, BoundaryEleOp>::OpEvaluateSDFImpl(
boost::shared_ptr<CommonData> common_data_ptr)
commonDataPtr(common_data_ptr) {}
template <int DIM, typename BoundaryEleOp>
MoFEMErrorCode
OpEvaluateSDFImpl<DIM, GAUSS, BoundaryEleOp>::doWork(
int side, EntityType type, EntData &data) {
const auto nb_gauss_pts = BoundaryEleOp::getGaussPts().size2();
auto &sdf_vec = commonDataPtr->sdfVals;
auto &grad_mat = commonDataPtr->gradsSdf;
auto &hess_mat = commonDataPtr->hessSdf;
sdf_vec.resize(nb_gauss_pts, false);
grad_mat.resize(DIM, nb_gauss_pts, false);
hess_mat.resize((DIM * (DIM + 1)) / 2, nb_gauss_pts, false);
auto t_total_traction = CommonData::getFTensor1TotalTraction();
auto t_sdf = getFTensor0FromVec(sdf_vec);
auto t_grad_sdf = getFTensor1FromMat<DIM>(grad_mat);
auto t_hess_sdf = getFTensor2SymmetricFromMat<DIM>(hess_mat);
auto t_disp = getFTensor1FromMat<DIM>(commonDataPtr->contactDisp);
auto next = [&]() {
++t_sdf;
++t_grad_sdf;
++t_hess_sdf;
++t_disp;
++t_coords;
};
auto ts_time = BoundaryEleOp::getTStime();
for (auto gg = 0; gg != nb_gauss_pts; ++gg) {
FTensor::Tensor1<double, 3> t_spatial_coords{0., 0., 0.};
t_spatial_coords(i) = t_coords(i) + t_disp(i);
auto sdf_v = surfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto t_grad_sdf_v = gradSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto t_hess_sdf_v = hessSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
t_sdf = sdf_v;
t_grad_sdf(i) = t_grad_sdf_v(i);
t_hess_sdf(i, j) = t_hess_sdf_v(i, j);
next();
}
}
template <int DIM, typename AssemblyBoundaryEleOp>
OpConstrainBoundaryRhsImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::
OpConstrainBoundaryRhsImpl(const std::string field_name,
boost::shared_ptr<CommonData> common_data_ptr)
AssemblyBoundaryEleOp::OPROW),
commonDataPtr(common_data_ptr) {}
template <int DIM, typename AssemblyBoundaryEleOp>
MoFEMErrorCode
OpConstrainBoundaryRhsImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::iNtegrate(
EntitiesFieldData::EntData &data) {
const size_t nb_gauss_pts = AssemblyBoundaryEleOp::getGaussPts().size2();
auto &nf = AssemblyBoundaryEleOp::locF;
auto t_normal_at_pts = AssemblyBoundaryEleOp::getFTensor1NormalsAtGaussPts();
auto t_total_traction = CommonData::getFTensor1TotalTraction();
auto t_w = AssemblyBoundaryEleOp::getFTensor0IntegrationWeight();
auto t_disp = getFTensor1FromMat<DIM>(commonDataPtr->contactDisp);
auto t_traction = getFTensor1FromMat<DIM>(commonDataPtr->contactTraction);
auto t_coords = AssemblyBoundaryEleOp::getFTensor1CoordsAtGaussPts();
size_t nb_base_functions = data.getN().size2() / 3;
auto t_base = data.getFTensor1N<3>();
for (size_t gg = 0; gg != nb_gauss_pts; ++gg) {
t_normal(i) =
t_normal_at_pts(i) / std::sqrt(t_normal_at_pts(i) * t_normal_at_pts(i));
auto t_nf = getFTensor1FromPtr<DIM>(&nf[0]);
const double alpha = t_w * AssemblyBoundaryEleOp::getMeasure();
FTensor::Tensor1<double, 3> t_spatial_coords{0., 0., 0.};
t_spatial_coords(i) = t_coords(i) + t_disp(i);
auto ts_time = AssemblyBoundaryEleOp::getTStime();
auto sdf = surfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto t_grad_sdf = gradSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto tn = -t_traction(i) * t_grad_sdf(i);
auto c = constrain(sdf, tn);
t_cP(i, j) = (c * t_grad_sdf(i)) * t_grad_sdf(j);
t_cQ(i, j) = kronecker_delta(i, j) - t_cP(i, j);
t_rhs(i) =
t_cQ(i, j) * (t_disp(j) - cn_contact * t_traction(j))
+
t_cP(i, j) * t_disp(j) +
c * (sdf * t_grad_sdf(i)); // add gap0 displacements
size_t bb = 0;
for (; bb != AssemblyBoundaryEleOp::nbRows / DIM; ++bb) {
const double beta = alpha * (t_base(i) * t_normal(i));
t_nf(i) -= beta * t_rhs(i);
++t_nf;
++t_base;
}
for (; bb < nb_base_functions; ++bb)
++t_base;
++t_disp;
++t_traction;
++t_coords;
++t_w;
++t_normal_at_pts;
}
}
template <int DIM, typename AssemblyBoundaryEleOp>
OpConstrainBoundaryLhs_dUImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::
OpConstrainBoundaryLhs_dUImpl(const std::string row_field_name,
const std::string col_field_name,
boost::shared_ptr<CommonData> common_data_ptr)
: AssemblyBoundaryEleOp(row_field_name, col_field_name,
AssemblyBoundaryEleOp::OPROWCOL),
commonDataPtr(common_data_ptr) {
AssemblyBoundaryEleOp::sYmm = false;
}
template <int DIM, typename AssemblyBoundaryEleOp>
MoFEMErrorCode
OpConstrainBoundaryLhs_dUImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::iNtegrate(
EntitiesFieldData::EntData &row_data,
EntitiesFieldData::EntData &col_data) {
const size_t nb_gauss_pts = AssemblyBoundaryEleOp::getGaussPts().size2();
auto &locMat = AssemblyBoundaryEleOp::locMat;
auto t_normal_at_pts = AssemblyBoundaryEleOp::getFTensor1NormalsAtGaussPts();
auto t_total_traction = CommonData::getFTensor1TotalTraction();
auto t_disp = getFTensor1FromMat<DIM>(commonDataPtr->contactDisp);
auto t_traction = getFTensor1FromMat<DIM>(commonDataPtr->contactTraction);
auto t_coords = AssemblyBoundaryEleOp::getFTensor1CoordsAtGaussPts();
auto t_w = AssemblyBoundaryEleOp::getFTensor0IntegrationWeight();
auto t_row_base = row_data.getFTensor1N<3>();
size_t nb_face_functions = row_data.getN().size2() / 3;
constexpr auto t_kd = FTensor::Kronecker_Delta<int>();
for (size_t gg = 0; gg != nb_gauss_pts; ++gg) {
t_normal(i) =
t_normal_at_pts(i) / std::sqrt(t_normal_at_pts(i) * t_normal_at_pts(i));
const double alpha = t_w * AssemblyBoundaryEleOp::getMeasure();
FTensor::Tensor1<double, 3> t_spatial_coords{0., 0., 0.};
t_spatial_coords(i) = t_coords(i) + t_disp(i);
auto ts_time = AssemblyBoundaryEleOp::getTStime();
auto sdf = surfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto t_grad_sdf = gradSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto tn = -t_traction(i) * t_grad_sdf(i);
auto c = constrain(sdf, tn);
t_cP(i, j) = (c * t_grad_sdf(i)) * t_grad_sdf(j);
t_cQ(i, j) = kronecker_delta(i, j) - t_cP(i, j);
t_res_dU(i, j) = kronecker_delta(i, j) + t_cP(i, j);
if (c > 0) {
auto t_hess_sdf = hessSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1),
t_spatial_coords(2), t_total_traction(0), t_total_traction(1),
t_total_traction(2));
t_res_dU(i, j) +=
(c * cn_contact) *
(t_hess_sdf(i, j) * (t_grad_sdf(k) * t_traction(k)) +
t_grad_sdf(i) * t_hess_sdf(k, j) * t_traction(k)) +
c * sdf * t_hess_sdf(i, j);
}
size_t rr = 0;
for (; rr != AssemblyBoundaryEleOp::nbRows / DIM; ++rr) {
auto t_mat = getFTensor2FromArray<DIM, DIM, DIM>(locMat, DIM * rr);
const double row_base = t_row_base(i) * t_normal(i);
auto t_col_base = col_data.getFTensor0N(gg, 0);
for (size_t cc = 0; cc != AssemblyBoundaryEleOp::nbCols / DIM; ++cc) {
const double beta = alpha * row_base * t_col_base;
t_mat(i, j) -= beta * t_res_dU(i, j);
++t_col_base;
++t_mat;
}
++t_row_base;
}
for (; rr < nb_face_functions; ++rr)
++t_row_base;
++t_disp;
++t_traction;
++t_coords;
++t_w;
++t_normal_at_pts;
}
}
template <int DIM, typename AssemblyBoundaryEleOp>
OpConstrainBoundaryLhs_dTractionImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::
OpConstrainBoundaryLhs_dTractionImpl(
const std::string row_field_name, const std::string col_field_name,
boost::shared_ptr<CommonData> common_data_ptr)
: AssemblyBoundaryEleOp(row_field_name, col_field_name,
AssemblyBoundaryEleOp::OPROWCOL),
commonDataPtr(common_data_ptr) {
AssemblyBoundaryEleOp::sYmm = false;
}
template <int DIM, typename AssemblyBoundaryEleOp>
MoFEMErrorCode
OpConstrainBoundaryLhs_dTractionImpl<DIM, GAUSS, AssemblyBoundaryEleOp>::
iNtegrate(EntitiesFieldData::EntData &row_data,
EntitiesFieldData::EntData &col_data) {
const size_t nb_gauss_pts = AssemblyBoundaryEleOp::getGaussPts().size2();
auto &locMat = AssemblyBoundaryEleOp::locMat;
auto t_normal_at_pts = AssemblyBoundaryEleOp::getFTensor1NormalsAtGaussPts();
auto t_total_traction = CommonData::getFTensor1TotalTraction();
auto t_disp = getFTensor1FromMat<DIM>(commonDataPtr->contactDisp);
auto t_traction = getFTensor1FromMat<DIM>(commonDataPtr->contactTraction);
auto t_coords = AssemblyBoundaryEleOp::getFTensor1CoordsAtGaussPts();
auto t_w = AssemblyBoundaryEleOp::getFTensor0IntegrationWeight();
auto t_row_base = row_data.getFTensor1N<3>();
size_t nb_face_functions = row_data.getN().size2() / 3;
for (size_t gg = 0; gg != nb_gauss_pts; ++gg) {
t_normal(i) =
t_normal_at_pts(i) / std::sqrt(t_normal_at_pts(i) * t_normal_at_pts(i));
const double alpha = t_w * AssemblyBoundaryEleOp::getMeasure();
FTensor::Tensor1<double, 3> t_spatial_coords{0., 0., 0.};
t_spatial_coords(i) = t_coords(i) + t_disp(i);
auto ts_time = AssemblyBoundaryEleOp::getTStime();
auto sdf = surfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto t_grad_sdf = gradSurfaceDistanceFunction(
ts_time, t_spatial_coords(0), t_spatial_coords(1), t_spatial_coords(2),
t_total_traction(0), t_total_traction(1), t_total_traction(2));
auto tn = -t_traction(i) * t_grad_sdf(i);
auto c = constrain(sdf, tn);
t_cP(i, j) = (c * t_grad_sdf(i)) * t_grad_sdf(j);
t_cQ(i, j) = kronecker_delta(i, j) - t_cP(i, j);
t_res_dt(i, j) = -cn_contact * t_cQ(i, j);
size_t rr = 0;
for (; rr != AssemblyBoundaryEleOp::nbRows / DIM; ++rr) {
auto t_mat = getFTensor2FromArray<DIM, DIM, DIM>(locMat, DIM * rr);
const double row_base = t_row_base(i) * t_normal(i);
auto t_col_base = col_data.getFTensor1N<3>(gg, 0);
for (size_t cc = 0; cc != AssemblyBoundaryEleOp::nbCols / DIM; ++cc) {
const double col_base = t_col_base(i) * t_normal(i);
const double beta = alpha * row_base * col_base;
t_mat(i, j) -= beta * t_res_dt(i, j);
++t_col_base;
++t_mat;
}
++t_row_base;
}
for (; rr < nb_face_functions; ++rr)
++t_row_base;
++t_disp;
++t_traction;
++t_coords;
++t_w;
++t_normal_at_pts;
}
}
template <int DIM, AssemblyType A, IntegrationType I, typename DomainEleOp>
MoFEMErrorCode opFactoryDomainRhs(
boost::ptr_deque<ForcesAndSourcesCore::UserDataOperator> &pip,
std::string sigma, std::string u) {
using B = typename FormsIntegrators<DomainEleOp>::template Assembly<
A>::template LinearForm<I>;
using OpMixDivURhs = typename B::template OpMixDivTimesU<3, DIM, DIM>;
using OpMixLambdaGradURhs = typename B::template OpMixTensorTimesGradU<DIM>;
typename B::template OpMixVecTimesDivLambda<SPACE_DIM>;
typename B::template OpGradTimesTensor<1, DIM, DIM>;
auto common_data_ptr = boost::make_shared<ContactOps::CommonData>();
auto mat_grad_ptr = boost::make_shared<MatrixDouble>();
auto div_stress_ptr = boost::make_shared<MatrixDouble>();
auto contact_stress_ptr = boost::make_shared<MatrixDouble>();
pip.push_back(new OpCalculateVectorFieldValues<DIM>(
u, common_data_ptr->contactDispPtr()));
pip.push_back(
new OpCalculateHVecTensorField<DIM, DIM>(sigma, contact_stress_ptr));
pip.push_back(
new OpCalculateHVecTensorDivergence<DIM, DIM>(sigma, div_stress_ptr));
pip.push_back(new OpCalculateVectorFieldGradient<DIM, DIM>(u, mat_grad_ptr));
pip.push_back(
new OpMixDivURhs(sigma, common_data_ptr->contactDispPtr(),
[](double, double, double) constexpr { return 1; }));
pip.push_back(new OpMixLambdaGradURhs(sigma, mat_grad_ptr));
pip.push_back(new OpMixUTimesDivLambdaRhs(u, div_stress_ptr));
pip.push_back(new OpMixUTimesLambdaRhs(u, contact_stress_ptr));
}
template <typename OpMixLhs> struct OpMixLhsSide : public OpMixLhs {
using OpMixLhs::OpMixLhs;
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
EntityType col_type,
EntitiesFieldData::EntData &row_data,
EntitiesFieldData::EntData &col_data) {
auto side_fe_entity = OpMixLhs::getSidePtrFE()->getFEEntityHandle();
auto side_fe_data = OpMixLhs::getSideEntity(row_side, row_type);
// Only assemble side which correspond to edge entity on boundary
if (side_fe_entity == side_fe_data) {
CHKERR OpMixLhs::doWork(row_side, col_side, row_type, col_type, row_data,
col_data);
}
}
};
template <int DIM, AssemblyType A, IntegrationType I, typename DomainEle>
MoFEM::Interface &m_field,
boost::ptr_deque<ForcesAndSourcesCore::UserDataOperator> &pip,
std::string fe_domain_name, std::string sigma, std::string u,
std::string geom, ForcesAndSourcesCore::RuleHookFun rule) {
using DomainEleOp = typename DomainEle::UserDataOperator;
auto op_loop_side = new OpLoopSide<DomainEle>(
m_field, fe_domain_name, DIM, Sev::noisy,
boost::make_shared<ForcesAndSourcesCore::UserDataOperator::AdjCache>());
pip.push_back(op_loop_side);
CHKERR AddHOOps<DIM, DIM, DIM>::add(op_loop_side->getOpPtrVector(),
{H1, HDIV}, geom);
using B = typename FormsIntegrators<DomainEleOp>::template Assembly<
A>::template BiLinearForm<I>;
using OpMixDivULhs = typename B::template OpMixDivTimesVec<DIM>;
using OpLambdaGraULhs = typename B::template OpMixTensorTimesGrad<DIM>;
using OpMixDivULhsSide = OpMixLhsSide<OpMixDivULhs>;
using OpLambdaGraULhsSide = OpMixLhsSide<OpLambdaGraULhs>;
auto unity = []() { return 1; };
op_loop_side->getOpPtrVector().push_back(
new OpMixDivULhsSide(sigma, u, unity, true));
op_loop_side->getOpPtrVector().push_back(
new OpLambdaGraULhsSide(sigma, u, unity, true));
op_loop_side->getSideFEPtr()->getRuleHook = rule;
}
template <int DIM, AssemblyType A, IntegrationType I, typename BoundaryEleOp>
MoFEMErrorCode opFactoryBoundaryLhs(
boost::ptr_deque<ForcesAndSourcesCore::UserDataOperator> &pip,
std::string sigma, std::string u) {
using C = ContactIntegrators<BoundaryEleOp>;
auto common_data_ptr = boost::make_shared<ContactOps::CommonData>();
pip.push_back(new OpCalculateVectorFieldValues<DIM>(
u, common_data_ptr->contactDispPtr()));
pip.push_back(new OpCalculateHVecTensorTrace<DIM, BoundaryEleOp>(
sigma, common_data_ptr->contactTractionPtr()));
pip.push_back(
new typename C::template Assembly<A>::template OpConstrainBoundaryLhs_dU<
DIM, GAUSS>(sigma, u, common_data_ptr));
pip.push_back(new typename C::template Assembly<A>::
template OpConstrainBoundaryLhs_dTraction<DIM, GAUSS>(
sigma, sigma, common_data_ptr));
}
template <int DIM, AssemblyType A, IntegrationType I, typename BoundaryEleOp>
MoFEMErrorCode opFactoryBoundaryRhs(
boost::ptr_deque<ForcesAndSourcesCore::UserDataOperator> &pip,
std::string sigma, std::string u) {
using C = ContactIntegrators<BoundaryEleOp>;
auto common_data_ptr = boost::make_shared<ContactOps::CommonData>();
pip.push_back(new OpCalculateVectorFieldValues<DIM>(
u, common_data_ptr->contactDispPtr()));
pip.push_back(new OpCalculateHVecTensorTrace<DIM, BoundaryEleOp>(
sigma, common_data_ptr->contactTractionPtr()));
pip.push_back(
new typename C::template Assembly<A>::template OpConstrainBoundaryRhs<
DIM, GAUSS>(sigma, common_data_ptr));
}
template <int DIM, IntegrationType I, typename BoundaryEleOp>
boost::ptr_deque<ForcesAndSourcesCore::UserDataOperator> &pip,
std::string sigma) {
using C = ContactIntegrators<BoundaryEleOp>;
auto common_data_ptr = boost::make_shared<ContactOps::CommonData>();
pip.push_back(new OpCalculateHVecTensorTrace<DIM, BoundaryEleOp>(
sigma, common_data_ptr->contactTractionPtr()));
pip.push_back(new typename C::template OpAssembleTotalContactTraction<DIM, I>(
common_data_ptr, 1. / scale));
}
}; // namespace ContactOps
#endif // __CONTACTOPS_HPP__
Kronecker Delta class.
#define CHK_THROW_MESSAGE(err, msg)
Check and throw MoFEM exception.
Definition: definitions.h:595
@ NOSPACE
Definition: definitions.h:83
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:346
#define CHK_MOAB_THROW(err, msg)
Check error code of MoAB function and throw MoFEM exception.
Definition: definitions.h:576
@ MOFEM_OPERATION_UNSUCCESSFUL
Definition: definitions.h:34
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:31
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:416
#define CHKERR
Inline error check.
Definition: definitions.h:535
constexpr auto t_kd
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
FTensor::Index< 'l', 3 > l
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
FormsIntegrators< DomainEleOp >::Assembly< USER_ASSEMBLE >::LinearForm< GAUSS >::OpGradTimesTensor< 1, 3, 3 > OpMixUTimesLambdaRhs
FormsIntegrators< DomainEleOp >::Assembly< USER_ASSEMBLE >::BiLinearForm< GAUSS >::OpMixDivTimesVec< 3 > OpMixDivULhs
FormsIntegrators< DomainEleOp >::Assembly< USER_ASSEMBLE >::LinearForm< GAUSS >::OpMixVecTimesDivLambda< 3 > OpMixUTimesDivLambdaRhs
FormsIntegrators< DomainEleOp >::Assembly< USER_ASSEMBLE >::LinearForm< GAUSS >::OpMixDivTimesU< 3, 3, 3 > OpMixDivURhs
FormsIntegrators< DomainEleOp >::Assembly< USER_ASSEMBLE >::BiLinearForm< GAUSS >::OpMixTensorTimesGrad< 3 > OpLambdaGraULhs
MoFEMErrorCode opFactoryDomainRhs(boost::ptr_deque< ForcesAndSourcesCore::UserDataOperator > &pip, std::string sigma, std::string u, bool is_axisymmetric=false)
FormsIntegrators< BoundaryEleOp >::Assembly< A >::OpBase AssemblyBoundaryEleOp
MatrixDouble grad_surface_distance_function(double delta_t, double t, int nb_gauss_pts, MatrixDouble &m_spatial_coords, MatrixDouble &m_normals_at_pts, int block_id)
Definition: ContactOps.hpp:273
MoFEMErrorCode opFactoryBoundaryToDomainLhs(MoFEM::Interface &m_field, boost::ptr_deque< ForcesAndSourcesCore::UserDataOperator > &pip, std::string fe_domain_name, std::string sigma, std::string u, std::string geom, ForcesAndSourcesCore::RuleHookFun rule, bool is_axisymmetric=false)
BoundaryEle::UserDataOperator BoundaryEleOp
MatrixDouble hess_surface_distance_function(double delta_t, double t, int nb_gauss_pts, MatrixDouble &m_spatial_coords, MatrixDouble &m_normals_at_pts, int block_id)
Definition: ContactOps.hpp:330
MoFEMErrorCode opFactoryBoundaryRhs(boost::ptr_deque< ForcesAndSourcesCore::UserDataOperator > &pip, std::string sigma, std::string u, bool is_axisymmetric=false)
double w(const double sdf, const double tn)
Definition: ContactOps.hpp:559
boost::function< MatrixDouble(double delta_t, double t, int nb_gauss_pts, MatrixDouble &spatial_coords, MatrixDouble &normals_at_pts, int block_id)> HessSurfaceDistanceFunction
Definition: ContactOps.hpp:214
double constrain(double sdf, double tn)
constrain function
Definition: ContactOps.hpp:572
VectorDouble surface_distance_function(double delta_t, double t, int nb_gauss_pts, MatrixDouble &m_spatial_coords, MatrixDouble &m_normals_at_pts, int block_id)
Definition: ContactOps.hpp:216
boost::function< VectorDouble(double delta_t, double t, int nb_gauss_pts, MatrixDouble &spatial_coords, MatrixDouble &normals_at_pts, int block_id)> SurfaceDistanceFunction
[Common data]
Definition: ContactOps.hpp:206
MoFEMErrorCode opFactoryBoundaryLhs(boost::ptr_deque< ForcesAndSourcesCore::UserDataOperator > &pip, std::string sigma, std::string u, bool is_axisymmetric=false)
boost::function< MatrixDouble(double delta_t, double t, int nb_gauss_pts, MatrixDouble &spatial_coords, MatrixDouble &normals_at_pts, int block_id)> GradSurfaceDistanceFunction
Definition: ContactOps.hpp:210
MoFEMErrorCode opFactoryCalculateTraction(boost::ptr_deque< ForcesAndSourcesCore::UserDataOperator > &pip, std::string sigma, bool is_axisymmetric=false)
double sign(double x)
Definition: ContactOps.hpp:549
Definition: sdf.py:1
FormsIntegrators< DomainEleOp >::Assembly< A >::LinearForm< I >::OpGradTimesTensor< 1, FIELD_DIM, SPACE_DIM > OpGradTimesTensor
constexpr AssemblyType A
constexpr double t
plate stiffness
Definition: plate.cpp:59
constexpr auto field_name
VectorDouble sdfVals
size is equal to number of gauss points on element
Definition: ContactOps.hpp:19
MatrixDouble contactTraction
Definition: ContactOps.hpp:16
static auto getFTensor1TotalTraction()
Definition: ContactOps.hpp:41
MatrixDouble contactDisp
Definition: ContactOps.hpp:17
MatrixDouble hessSdf
Definition: ContactOps.hpp:22
MatrixDouble gradsSdf
Definition: ContactOps.hpp:20
static SmartPetscObj< Vec > totalTraction
Definition: ContactOps.hpp:28
static auto createTotalTraction(MoFEM::Interface &m_field)
Definition: ContactOps.hpp:30
OpConstrainBoundaryLhs_dUImpl< DIM, I, AssemblyBoundaryEleOp > OpConstrainBoundaryLhs_dU
Definition: ContactOps.hpp:541
OpConstrainBoundaryLhs_dTractionImpl< DIM, I, AssemblyBoundaryEleOp > OpConstrainBoundaryLhs_dTraction
Definition: ContactOps.hpp:545
OpConstrainBoundaryRhsImpl< DIM, I, AssemblyBoundaryEleOp > OpConstrainBoundaryRhs
Definition: ContactOps.hpp:537
OpEvaluateSDFImpl< DIM, I, BoundaryEleOp > OpEvaluateSDF
Definition: ContactOps.hpp:528
OpAssembleTotalContactTractionImpl< DIM, I, BoundaryEleOp > OpAssembleTotalContactTraction
Definition: ContactOps.hpp:525
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)
virtual MPI_Comm & get_comm() const =0
virtual int get_comm_rank() const =0
Deprecated interface functions.
Data on single entity (This is passed as argument to DataOperator::doWork)
auto getFTensor1CoordsAtGaussPts()
Get coordinates at integration points assuming linear geometry.
auto getFTensor0IntegrationWeight()
Get integration weights.
double getMeasure() const
get measure of element
@ OPSPACE
operator do Work is execute on space data
MatrixDouble & getGaussPts()
matrix of integration (Gauss) points for Volume Element