v0.14.0
Searching...
No Matches
EshelbianOperators.cpp

Implementation of operators.

Implementation of operators

/**
* \file EshelbianOperators.cpp
* \example EshelbianOperators.cpp
*
* \brief Implementation of operators
*/
#include <MoFEM.hpp>
using namespace MoFEM;
#include <boost/math/constants/constants.hpp>
#include <lapack_wrap.h>
inline auto diff_deviator(FTensor::Ddg<double, 3, 3> &&t_diff_stress) {
FTensor::Ddg<double, 3, 3> t_diff_deviator;
t_diff_deviator(i, j, k, l) = t_diff_stress(i, j, k, l);
constexpr double third = boost::math::constants::third<double>();
t_diff_deviator(0, 0, 0, 0) -= third;
t_diff_deviator(0, 0, 1, 1) -= third;
t_diff_deviator(1, 1, 0, 0) -= third;
t_diff_deviator(1, 1, 1, 1) -= third;
t_diff_deviator(2, 2, 0, 0) -= third;
t_diff_deviator(2, 2, 1, 1) -= third;
t_diff_deviator(0, 0, 2, 2) -= third;
t_diff_deviator(1, 1, 2, 2) -= third;
t_diff_deviator(2, 2, 2, 2) -= third;
return t_diff_deviator;
}
constexpr static auto size_symm = (3 * (3 + 1)) / 2;
inline auto diff_tensor() {
t_diff(i, j, k, l) = (t_kd(i, k) ^ t_kd(j, l)) / 4.;
return t_diff;
};
inline auto symm_L_tensor() {
t_L(i, j, L) = 0;
t_L(0, 0, 0) = 1;
t_L(1, 1, 3) = 1;
t_L(2, 2, 5) = 1;
t_L(1, 0, 1) = 1;
t_L(2, 0, 2) = 1;
t_L(2, 1, 4) = 1;
return t_L;
}
template <class T> struct TensorTypeExtractor {
typedef typename std::remove_pointer<T>::type Type;
};
template <class T, int I> struct TensorTypeExtractor<FTensor::PackPtr<T, I>> {
typedef typename std::remove_pointer<T>::type Type;
};
template <typename T>
RotSelector rotSelector = LARGE_ROT) {
using D = typename TensorTypeExtractor<T>::Type;
constexpr auto t_kd = FTensor::Kronecker_Delta<int>();
t_R(i, j) = t_kd(i, j);
t_Omega(i, j) = FTensor::levi_civita<double>(i, j, k) * t_omega(k);
const auto angle =
sqrt(t_omega(i) * t_omega(i)) + std::numeric_limits<double>::epsilon();
if (rotSelector == SMALL_ROT) {
t_R(i, j) += t_Omega(i, j);
return t_R;
}
const auto a = sin(angle) / angle;
t_R(i, j) += a * t_Omega(i, j);
if (rotSelector == MODERATE_ROT)
return t_R;
const auto ss_2 = sin(angle / 2.);
const auto b = 2. * ss_2 * ss_2 / (angle * angle);
t_R(i, j) += b * t_Omega(i, k) * t_Omega(k, j);
return t_R;
}
template <typename T>
RotSelector rotSelector = LARGE_ROT) {
using D = typename TensorTypeExtractor<T>::Type;
const auto angle =
sqrt(t_omega(i) * t_omega(i)) + std::numeric_limits<double>::epsilon();
if (rotSelector == SMALL_ROT) {
t_diff_R(i, j, k) = FTensor::levi_civita<double>(i, j, k);
return t_diff_R;
}
const auto ss = sin(angle);
const auto a = ss / angle;
t_diff_R(i, j, k) = a * FTensor::levi_civita<double>(i, j, k);
t_Omega(i, j) = FTensor::levi_civita<double>(i, j, k) * t_omega(k);
const auto angle2 = angle * angle;
const auto cc = cos(angle);
const auto diff_a = (angle * cc - ss) / angle2;
t_diff_R(i, j, k) += diff_a * t_Omega(i, j) * (t_omega(k) / angle);
if (rotSelector == MODERATE_ROT)
return t_diff_R;
const auto ss_2 = sin(angle / 2.);
const auto cc_2 = cos(angle / 2.);
const auto b = 2. * ss_2 * ss_2 / angle2;
t_diff_R(i, j, k) +=
b * (t_Omega(i, l) * FTensor::levi_civita<double>(l, j, k) +
FTensor::levi_civita<double>(i, l, k) * t_Omega(l, j));
const auto diff_b =
(2. * angle * ss_2 * cc_2 - 4. * ss_2 * ss_2) / (angle2 * angle);
t_diff_R(i, j, k) +=
diff_b * t_Omega(i, l) * t_Omega(l, j) * (t_omega(k) / angle);
return t_diff_R;
}
template <typename T>
RotSelector rotSelector = LARGE_ROT) {
using D = typename TensorTypeExtractor<T>::Type;
constexpr double eps = 1e-10;
for (int l = 0; l != 3; ++l) {
t_omega_c(i) = t_omega(i);
t_omega_c(l) += std::complex<double>(0, eps);
auto t_diff_R_c = get_diff_rotation_form_vector(t_omega_c, rotSelector);
for (int i = 0; i != 3; ++i) {
for (int j = 0; j != 3; ++j) {
for (int k = 0; k != 3; ++k) {
t_diff2_R(i, j, k, l) = t_diff_R_c(i, j, k).imag() / eps;
}
}
}
}
return t_diff2_R;
}
struct isEq {
static inline auto check(const double &a, const double &b) {
constexpr double eps = std::numeric_limits<float>::epsilon();
return std::abs(a - b) / absMax < eps;
}
static double absMax;
};
double isEq::absMax = 1;
inline auto is_eq(const double &a, const double &b) {
return isEq::check(a, b);
};
template <int DIM> inline auto get_uniq_nb(double *ptr) {
std::array<double, DIM> tmp;
std::copy(ptr, &ptr[DIM], tmp.begin());
std::sort(tmp.begin(), tmp.end());
isEq::absMax = std::max(std::abs(tmp[0]), std::abs(tmp[DIM - 1]));
constexpr double eps = std::numeric_limits<float>::epsilon();
isEq::absMax = std::max(isEq::absMax, static_cast<double>(eps));
return std::distance(tmp.begin(), std::unique(tmp.begin(), tmp.end(), is_eq));
}
template <int DIM>
std::max(std::max(std::abs(eig(0)), std::abs(eig(1))), std::abs(eig(2)));
int i = 0, j = 1, k = 2;
if (is_eq(eig(0), eig(1))) {
i = 0;
j = 2;
k = 1;
} else if (is_eq(eig(0), eig(2))) {
i = 0;
j = 1;
k = 2;
} else if (is_eq(eig(1), eig(2))) {
i = 1;
j = 0;
k = 2;
}
eigen_vec(i, 0), eigen_vec(i, 1), eigen_vec(i, 2),
eigen_vec(j, 0), eigen_vec(j, 1), eigen_vec(j, 2),
eigen_vec(k, 0), eigen_vec(k, 1), eigen_vec(k, 2)};
FTensor::Tensor1<double, 3> eig_c{eig(i), eig(j), eig(k)};
{
eig(i) = eig_c(i);
eigen_vec(i, j) = eigen_vec_c(i, j);
}
}
EntityType type,
EntData &data) {
auto t_L = symm_L_tensor();
int nb_integration_pts = getGaussPts().size2();
dataAtPts->hAtPts.resize(9, nb_integration_pts, false);
dataAtPts->hdOmegaAtPts.resize(9 * 3, nb_integration_pts, false);
dataAtPts->hdLogStretchAtPts.resize(9 * 6, nb_integration_pts, false);
dataAtPts->leviKirchoffAtPts.resize(3, nb_integration_pts, false);
dataAtPts->leviKirchoffdPAtPts.resize(9 * 3, nb_integration_pts, false);
dataAtPts->leviKirchoffdOmegaAtPts.resize(9, nb_integration_pts, false);
false);
dataAtPts->rotMatAtPts.resize(9, nb_integration_pts, false);
dataAtPts->diffRotMatAtPts.resize(27, nb_integration_pts, false);
dataAtPts->stretchTensorAtPts.resize(6, nb_integration_pts, false);
dataAtPts->diffStretchTensorAtPts.resize(36, nb_integration_pts, false);
dataAtPts->eigenVals.resize(3, nb_integration_pts, false);
dataAtPts->eigenVecs.resize(9, nb_integration_pts, false);
dataAtPts->nbUniq.resize(nb_integration_pts, false);
dataAtPts->logStretchTotalTensorAtPts.resize(6, nb_integration_pts, false);
auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(dataAtPts->hdOmegaAtPts);
auto t_h_dlog_u = getFTensor3FromMat<3, 3, size_symm>(dataAtPts->hdLogStretchAtPts);
auto t_levi_kirchoff = getFTensor1FromMat<3>(dataAtPts->leviKirchoffAtPts);
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(dataAtPts->leviKirchoffdPAtPts);
auto t_levi_kirchoff_domega =
getFTensor2FromMat<3, 3>(dataAtPts->leviKirchoffdOmegaAtPts);
auto t_omega = getFTensor1FromMat<3>(dataAtPts->rotAxisAtPts);
auto t_R = getFTensor2FromMat<3, 3>(dataAtPts->rotMatAtPts);
auto t_diff_R = getFTensor3FromMat<3, 3, 3>(dataAtPts->diffRotMatAtPts);
auto t_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(dataAtPts->stretchTensorAtPts);
auto t_approx_P = getFTensor2FromMat<3, 3>(dataAtPts->approxPAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(dataAtPts->diffStretchTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(dataAtPts->eigenVecs);
auto &nbUniq = dataAtPts->nbUniq;
auto t_log_stretch_total =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTotalTensorAtPts);
for (int gg = 0; gg != nb_integration_pts; ++gg) {
FTensor::Tensor2<double, 3, 3> t_approx_P_intermidiata;
t_h1(i, j) = t_grad_h1(i, j) + t_kd(i, j);
auto calulate_rotation = [&]() {
auto t0_diff =
t_diff_R(i, j, k) = t0_diff(i, j, k);
t_R(i, j) = t0(i, j);
};
auto calulate_streach = [&]() {
eigen_vec(i, j) = t_log_u(i, j);
CHKERR computeEigenValuesSymmetric(eigen_vec, eig);
// rare case when two eigen values are equal
nbUniq[gg] = get_uniq_nb<3>(&eig(0));
if (nbUniq[gg] < 3) {
sort_eigen_vals<3>(eig, eigen_vec);
}
t_eigen_vals(i) = eig(i);
t_eigen_vecs(i, j) = eigen_vec(i, j);
auto t_u_tmp =
EigenMatrix::getMat(t_eigen_vals, t_eigen_vecs, EshelbianCore::f);
t_u(i, j) = t_u_tmp(i, j);
auto t_diff_u_tmp =
EigenMatrix::getDiffMat(t_eigen_vals, t_eigen_vecs, EshelbianCore::f,
EshelbianCore::d_f, nbUniq[gg]);
t_diff_u(i, j, k, l) = t_diff_u_tmp(i, j, k, l);
t_Ldiff_u(i, j, L) = t_diff_u(i, j, m, n) * t_L(m, n, L);
};
calulate_rotation();
calulate_streach();
case LARGE_ROT:
t_Ru(i, m) = t_R(i, l) * t_u(l, m);
t_h(i, j) = t_Ru(i, m) * t_h1(m, j);
t_h_domega(i, j, k) = (t_diff_R(i, l, k) * t_u(l, m)) * t_h1(m, j);
t_h_dlog_u(i, j, L) = (t_R(i, l) * t_Ldiff_u(l, m, L)) * t_h1(m, j);
t_approx_P_intermidiata(i, m) = t_approx_P(i, j) * t_h1(m, j);
t_approx_P_intermidiata(i, m) * t_R(i, l);
t_levi_kirchoff(k) =
levi_civita(l, m, k) * (t_approx_P_adjont_dstretch(l, m));
t_levi_kirchoff_dP(i, j, k) =
(levi_civita(l, m, k) * t_R(i, l)) * t_h1(m, j);
t_levi_kirchoff_domega(k, n) =
levi_civita(l, m, k) *
(t_approx_P_intermidiata(i, m) * t_diff_R(i, l, n));
t_Ldiff_u(l, m, L) * t_approx_P_adjont_dstretch(l, m);
t_approx_P_adjont_log_du_dP(i, j, L) = t_h_dlog_u(i, j, L);
t_Ldiff_u(l, m, L) *
(t_approx_P_intermidiata(i, m) * t_diff_R(i, l, n));
break;
t_Ru(i, m) =
t_kd(i, m) + (t_R(i, m) - t_kd(i, m)) + (t_u(i, m) - t_kd(i, m));
t_h(i, j) = t_Ru(i, m) * t_h1(m, j);
t_h_domega(i, j, k) = t_diff_R(i, m, k) * t_h1(m, j);
t_h_dlog_u(i, j, L) = t_Ldiff_u(i, m, L) * t_h1(m, j);
t_approx_P_intermidiata(i, m) = t_approx_P(i, j) * t_h1(m, j);
t_levi_kirchoff(k) =
levi_civita(i, m, k) * (t_approx_P_adjont_dstretch(i, m));
t_levi_kirchoff_dP(i, j, k) = levi_civita(i, m, k) * t_h1(m, j);
t_levi_kirchoff_domega(k, n) = 0;
t_Ldiff_u(i, m, L) * t_approx_P_adjont_dstretch(i, m);
t_approx_P_adjont_log_du_dP(i, j, L) = t_h_dlog_u(i, j, L);
break;
case SMALL_ROT:
t_h(i, j) =
t_kd(i, j) + (t_R(i, j) - t_kd(i, j)) + (t_u(i, j) - t_kd(i, j));
t_h_domega(i, j, k) = t_diff_R(i, j, k);
t_h_dlog_u(i, j, L) = t_Ldiff_u(i, j, L);
t_levi_kirchoff(k) = levi_civita(i, j, k) * t_approx_P(i, j);
t_levi_kirchoff_dP(i, j, k) = levi_civita(i, j, k);
t_levi_kirchoff_domega(k, l) = 0;
t_Ldiff_u(i, j, L) * t_approx_P_adjont_dstretch(i, j);
t_approx_P_adjont_log_du_dP(i, j, L) = t_h_dlog_u(i, j, L);
break;
}
t_C_h1(i, j) = t_h1(k, i) * t_h1(k, j);
eigen_vec(i, j) = t_C_h1(i, j);
CHKERR computeEigenValuesSymmetric(eigen_vec, eig);
break;
for (int ii = 0; ii != 3; ++ii) {
eig(ii) = std::max(eig(ii),
std::numeric_limits<double>::min_exponent)));
}
break;
}
auto t_log_u2_h1_tmp =
case LARGE_ROT:
t_log_stretch_total(i, j) = t_log_u2_h1_tmp(i, j) / 2 + t_log_u(i, j);
break;
case SMALL_ROT:
t_log_stretch_total(i, j) = t_log_u(i, j);
break;
};
++t_h;
++t_h_domega;
++t_h_dlog_u;
++t_levi_kirchoff;
++t_levi_kirchoff_dP;
++t_levi_kirchoff_domega;
++t_approx_P;
++t_R;
++t_diff_R;
++t_log_u;
++t_u;
++t_diff_u;
++t_eigen_vals;
++t_eigen_vecs;
++t_omega;
++t_log_stretch_total;
}
}
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_div_P = getFTensor1FromMat<3>(dataAtPts->divPAtPts);
auto t_s_dot_w = getFTensor1FromMat<3>(dataAtPts->wL2DotAtPts);
if (dataAtPts->wL2DotDotAtPts.size1() == 0 &&
dataAtPts->wL2DotDotAtPts.size2() != nb_integration_pts) {
dataAtPts->wL2DotDotAtPts.resize(3, nb_integration_pts);
dataAtPts->wL2DotDotAtPts.clear();
}
auto t_s_dot_dot_w = getFTensor1FromMat<3>(dataAtPts->wL2DotDotAtPts);
int nb_base_functions = data.getN().size2();
auto t_row_base_fun = data.getFTensor0N();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor1(nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(i) += a * t_row_base_fun * t_div_P(i);
t_nf(i) -= a * t_row_base_fun * alphaW * t_s_dot_w(i);
t_nf(i) -= a * t_row_base_fun * alphaRho * t_s_dot_dot_w(i);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_div_P;
++t_s_dot_w;
++t_s_dot_dot_w;
}
}
int nb_dofs = data.getIndices().size();
int nb_integration_pts = getGaussPts().size2();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff = getFTensor1FromMat<3>(dataAtPts->leviKirchoffAtPts);
int nb_base_functions = data.getN().size2();
auto t_row_base_fun = data.getFTensor0N();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor1(nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(k) += (a * t_row_base_fun) * t_levi_kirchoff(k);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff;
}
}
if (dataAtPts->physicsPtr->dependentVariablesPiola.size()) {
} else {
if (polyConvex) {
} else {
}
}
}
auto t_L = symm_L_tensor();
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_log_streach_h1 =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTotalTensorAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchDotTensorAtPts);
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(dataAtPts->matD);
auto get_ftensor2 = [](auto &v) {
&v[0], &v[1], &v[2], &v[3], &v[4], &v[5]);
};
int nb_base_functions = data.getN().size2();
auto t_row_base_fun = data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor2(nF);
t_T(i, j) =
t_D(i, j, k, l) * (t_log_streach_h1(k, l) + alphaU * t_dot_log_u(k, l));
t_residual(L) = a * (t_approx_P_adjont_log_du(L) - t_L(i, j, L) * t_T(i, j));
int bb = 0;
for (; bb != nb_dofs / 6; ++bb) {
t_nf(L) += t_row_base_fun * t_residual(L);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_dot_log_u;
++t_log_streach_h1;
}
}
auto t_L = symm_L_tensor();
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_log_streach_h1 =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTotalTensorAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchDotTensorAtPts);
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(dataAtPts->matD);
auto get_ftensor2 = [](auto &v) {
&v[0], &v[1], &v[2], &v[3], &v[4], &v[5]);
};
constexpr double nohat_k = 1. / 4;
constexpr double hat_k = 1. / 8;
double mu = dataAtPts->mu;
double lambda = dataAtPts->lambda;
constexpr double third = boost::math::constants::third<double>();
auto t_diff_deviator = diff_deviator(diff_tensor());
int nb_base_functions = data.getN().size2();
auto t_row_base_fun = data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor2(nF);
double log_det = t_log_streach_h1(i, i);
double log_det2 = log_det * log_det;
t_dev(i, j) = t_log_streach_h1(i, j) - t_kd(i, j) * (third * log_det);
double dev_norm2 = t_dev(i, j) * t_dev(i, j);
auto A = 2 * mu * std::exp(nohat_k * dev_norm2);
auto B = lambda * std::exp(hat_k * log_det2) * log_det;
t_T(i, j) =
A * (t_dev(k, l) * t_diff_deviator(k, l, i, j))
+
B * t_kd(i, j)
+
alphaU * t_D(i, j, k, l) * t_log_streach_h1(k, l);
t_residual(L) =
a * (t_approx_P_adjont_log_du(L) - t_L(i, j, L) * t_T(i, j));
int bb = 0;
for (; bb != nb_dofs / 6; ++bb) {
t_nf(L) += t_row_base_fun * t_residual(L);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_dot_log_u;
++t_log_streach_h1;
}
}
auto t_L = symm_L_tensor();
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_P = getFTensor2FromMat<3, 3>(dataAtPts->PAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchDotTensorAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(dataAtPts->diffStretchTensorAtPts);
auto get_ftensor2 = [](auto &v) {
&v[0], &v[1], &v[2], &v[3], &v[4], &v[5]);
};
int nb_base_functions = data.getN().size2();
auto t_row_base_fun = data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor2(nF);
t_Ldiff_u(i, j, L) = t_diff_u(i, j, k, l) * t_L(k, l, L);
t_viscous_P(i, j) =
t_dot_log_u(i,
j); // That is chit, should be split on axiator and deviator
t_residual(L) =
a * (t_approx_P_adjont_log_du(L) - t_Ldiff_u(i, j, L) * t_P(i, j) -
t_L(i, j, L) * t_viscous_P(i, j));
int bb = 0;
for (; bb != nb_dofs / 6; ++bb) {
t_nf(L) += t_row_base_fun * t_residual(L);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_P;
++t_dot_log_u;
++t_diff_u;
}
}
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
auto t_omega_dot = getFTensor1FromMat<3>(dataAtPts->rotAxisDotAtPts);
int nb_base_functions = data.getN().size2() / 3;
auto t_row_base_fun = data.getFTensor1N<3>();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor1(nF);
constexpr auto t_kd = FTensor::Kronecker_Delta<int>();
t_residuum(i, j) = t_h(i, j) - t_kd(i, j);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(i) += a * t_row_base_fun(j) * t_residuum(i, j);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_h;
++t_omega_dot;
}
}
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
auto t_omega_dot = getFTensor1FromMat<3>(dataAtPts->rotAxisDotAtPts);
int nb_base_functions = data.getN().size2() / 9;
auto t_row_base_fun = data.getFTensor2N<3, 3>();
auto get_ftensor0 = [](auto &v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor0(nF);
constexpr auto t_kd = FTensor::Kronecker_Delta<int>();
t_residuum(i, j) = t_h(i, j) - t_kd(i, j);
int bb = 0;
for (; bb != nb_dofs; ++bb) {
t_nf += a * t_row_base_fun(i, j) * t_residuum(i, j);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_base_fun;
}
++t_w;
++t_h;
++t_omega_dot;
}
}
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_w_l2 = getFTensor1FromMat<3>(dataAtPts->wL2AtPts);
int nb_base_functions = data.getN().size2() / 3;
auto t_row_diff_base_fun = data.getFTensor2DiffN<3, 3>();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
auto t_nf = get_ftensor1(nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
double div_row_base = t_row_diff_base_fun(i, i);
t_nf(i) += a * div_row_base * t_w_l2(i);
++t_nf;
++t_row_diff_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_diff_base_fun;
}
++t_w;
++t_w_l2;
}
}
// get entity of face
EntityHandle fe_ent = getFEEntityHandle();
// interate over all boundary data
for (auto &bc : (*bcDispPtr)) {
// check if finite element entity is part of boundary condition
if (bc.faces.find(fe_ent) != bc.faces.end()) {
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto t_normal = getFTensor1Normal();
auto t_w = getFTensor0IntegrationWeight();
int nb_base_functions = data.getN().size2() / 3;
auto t_row_base_fun = data.getFTensor1N<3>();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
// get bc data
FTensor::Tensor1<double, 3> t_bc_disp(bc.vals[0], bc.vals[1], bc.vals[2]);
t_bc_disp(i) *= getFEMethod()->ts_t;
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_bc_res(i) = t_bc_disp(i);
auto t_nf = get_ftensor1(nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(i) -=
t_w * (t_row_base_fun(j) * t_normal(j)) * t_bc_res(i) * 0.5;
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
}
}
}
}
// get entity of face
EntityHandle fe_ent = getFEEntityHandle();
// interate over all boundary data
for (auto &bc : (*bcRotPtr)) {
// check if finite element entity is part of boundary condition
if (bc.faces.find(fe_ent) != bc.faces.end()) {
int nb_dofs = data.getIndices().size();
int nb_integration_pts = data.getN().size1();
auto t_normal = getFTensor1Normal();
auto t_w = getFTensor0IntegrationWeight();
int nb_base_functions = data.getN().size2() / 3;
auto t_row_base_fun = data.getFTensor1N<3>();
auto get_ftensor1 = [](auto &v) {
&v[2]);
};
// get bc data
FTensor::Tensor1<double, 3> t_center(bc.vals[0], bc.vals[1], bc.vals[2]);
double theta = bc.theta;
theta *= getFEMethod()->ts_t;
const double a = sqrt(t_normal(i) * t_normal(i));
t_omega(i) = t_normal(i) * (theta / a);
auto t_R = get_rotation_form_vector(t_omega, LARGE_ROT);
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_delta(i) = t_center(i) - t_coords(i);
t_disp(i) = t_delta(i) - t_R(i, j) * t_delta(j);
auto t_nf = get_ftensor1(nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(i) -= t_w * (t_row_base_fun(j) * t_normal(j)) * t_disp(i) * 0.5;
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_coords;
}
}
}
}
struct FaceRule {
int operator()(int p_row, int p_col, int p_data) const {
return 2 * (p_data + 1);
}
};
if (ts_ctx == CTX_TSSETIFUNCTION) {
// Loop boundary elements with traction boundary conditions
{HDIV});
fe.getOpPtrVector().push_back(
new OpTractionBc(std::string("P") /* + "_RT"*/, *this));
fe.getRuleHook = FaceRule();
fe.ts_t = ts_t;
CHKERR mField.loop_finite_elements(problemPtr->getName(), "ESSENTIAL_BC",
fe, nullptr, MF_ZERO,
this->getCacheWeakPtr());
}
}
auto t_normal = getFTensor1Normal();
const double nrm2 = sqrt(t_normal(i) * t_normal(i));
t_unit_normal(i) = t_normal(i) / nrm2;
int nb_dofs = data.getFieldData().size();
int nb_integration_pts = data.getN().size1();
int nb_base_functions = data.getN().size2() / 3;
double ts_t = getFEMethod()->ts_t;
auto integrate_matrix = [&]() {
auto t_w = getFTensor0IntegrationWeight();
matPP.resize(nb_dofs / 3, nb_dofs / 3, false);
matPP.clear();
auto t_row_base_fun = data.getFTensor1N<3>();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double a = t_row_base_fun(i) * t_unit_normal(i);
auto t_col_base_fun = data.getFTensor1N<3>(gg, 0);
for (int cc = 0; cc != nb_dofs / 3; ++cc) {
const double b = t_col_base_fun(i) * t_unit_normal(i);
matPP(rr, cc) += t_w * a * b;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
};
auto integrate_rhs = [&](auto &bc) {
auto t_w = getFTensor0IntegrationWeight();
vecPv.resize(3, nb_dofs / 3, false);
vecPv.clear();
auto t_row_base_fun = data.getFTensor1N<3>();
double ts_t = getFEMethod()->ts_t;
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double t = ts_t * t_w * t_row_base_fun(i) * t_unit_normal(i);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
vecPv(dd, rr) += t * bc.vals[dd];
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
};
auto integrate_rhs_cook = [&](auto &bc) {
vecPv.resize(3, nb_dofs / 3, false);
vecPv.clear();
auto t_w = getFTensor0IntegrationWeight();
auto t_row_base_fun = data.getFTensor1N<3>();
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto calc_tau = [](double y) {
y -= 44;
y /= (60 - 44);
return -y * (y - 1) / 0.25;
};
const double tau = calc_tau(t_coords(1));
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double t = ts_t * t_w * t_row_base_fun(i) * t_unit_normal(i);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
vecPv(dd, rr) += t * tau * bc.vals[dd];
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_coords;
}
};
// get entity of face
EntityHandle fe_ent = getFEEntityHandle();
for (auto &bc : *(bcFe.bcData)) {
if (bc.faces.find(fe_ent) != bc.faces.end()) {
int nb_dofs = data.getFieldData().size();
if (nb_dofs) {
CHKERR integrate_matrix();
if (std::regex_match(bc.blockName, std::regex(".*COOK.*")))
CHKERR integrate_rhs_cook(bc);
else
CHKERR integrate_rhs(bc);
const auto info =
lapack_dposv('L', nb_dofs / 3, 3, &*matPP.data().begin(),
nb_dofs / 3, &*vecPv.data().begin(), nb_dofs / 3);
if (info > 0)
SETERRQ1(PETSC_COMM_SELF, MOFEM_OPERATION_UNSUCCESSFUL,
"The leading minor of order %i is "
"not positive; definite;\nthe "
"solution could not be computed",
info);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
for (int rr = 0; rr != nb_dofs / 3; ++rr)
data.getFieldDofs()[3 * rr + dd]->getFieldData() = vecPv(dd, rr);
}
}
}
}
EntData &col_data) {
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor1 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 1, c + 1), &m(r + 2, c + 2));
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_col_diff_base_fun = col_data.getFTensor2DiffN<3, 3>(gg, 0);
auto t_m = get_ftensor1(K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
double div_col_base = t_col_diff_base_fun(i, i);
t_m(i) += a * t_row_base_fun * div_col_base;
++t_m;
++t_col_diff_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
EntData &col_data) {
if (alphaW < std::numeric_limits<double>::epsilon() &&
alphaRho < std::numeric_limits<double>::epsilon())
const int nb_integration_pts = row_data.getN().size1();
const int row_nb_dofs = row_data.getIndices().size();
auto get_ftensor1 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 1, c + 1), &m(r + 2, c + 2)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
double ts_scale = alphaW * getTSa();
if (std::abs(alphaRho) > std::numeric_limits<double>::epsilon())
ts_scale += alphaRho * getTSaa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w * ts_scale;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_col_base_fun = row_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor1(K, 3 * rr, 0);
for (int cc = 0; cc != row_nb_dofs / 3; ++cc) {
const double b = a * t_row_base_fun * t_col_base_fun;
t_m(i) -= b;
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
EntData &col_data) {
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor3 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2),
&m(r + 3, c + 0), &m(r + 3, c + 1), &m(r + 3, c + 2),
&m(r + 4, c + 0), &m(r + 4, c + 1), &m(r + 4, c + 2),
&m(r + 5, c + 0), &m(r + 5, c + 1), &m(r + 5, c + 2));
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_col_base_fun = col_data.getFTensor1N<3>(gg, 0);
auto t_m = get_ftensor3(K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(L, i) += a *
(t_approx_P_adjont_log_du_dP(i, j, L) * t_col_base_fun(j)) *
t_row_base_fun;
++t_col_base_fun;
++t_m;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
EntData &col_data) {
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c), &m(r + 1, c), &m(r + 2, c), &m(r + 3, c), &m(r + 4, c),
&m(r + 5, c));
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor2(K, 6 * rr, 0);
auto t_col_base_fun = col_data.getFTensor2N<3, 3>(gg, 0);
for (int cc = 0; cc != col_nb_dofs; ++cc) {
t_m(L) += a *
(t_approx_P_adjont_log_du_dP(i, j, L) * t_col_base_fun(i, j)) *
t_row_base_fun;
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
EntData &col_data) {
if (dataAtPts->physicsPtr->dependentVariablesPiola.size()) {
CHKERR integratePiola(row_data, col_data);
} else {
if (polyConvex) {
CHKERR integratePolyconvexHencky(row_data, col_data);
} else {
CHKERR integrateHencky(row_data, col_data);
}
}
}
EntData &col_data) {
auto t_L = symm_L_tensor();
auto t_diff = diff_tensor();
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2), &m(r + 0, c + 3),
&m(r + 0, c + 4), &m(r + 0, c + 5),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2), &m(r + 1, c + 3),
&m(r + 1, c + 4), &m(r + 1, c + 5),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2), &m(r + 2, c + 3),
&m(r + 2, c + 4), &m(r + 2, c + 5),
&m(r + 3, c + 0), &m(r + 3, c + 1), &m(r + 3, c + 2), &m(r + 3, c + 3),
&m(r + 3, c + 4), &m(r + 3, c + 5),
&m(r + 4, c + 0), &m(r + 4, c + 1), &m(r + 4, c + 2), &m(r + 4, c + 3),
&m(r + 4, c + 4), &m(r + 4, c + 5),
&m(r + 5, c + 0), &m(r + 5, c + 1), &m(r + 5, c + 2), &m(r + 5, c + 3),
&m(r + 5, c + 4), &m(r + 5, c + 5)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_eigen_vals = getFTensor1FromMat<3>(dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(dataAtPts->eigenVecs);
auto &nbUniq = dataAtPts->nbUniq;
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(dataAtPts->matD);
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
// Work of symmetric tensor on undefined tensor is equal to the work of
// the symmetric part of it
t_sym(i, j) = (t_approx_P_adjont_dstretch(i, j) ||
t_sym(i, j) /= 2.0;
auto t_diff2_uP2 = EigenMatrix::getDiffDiffMat(
t_eigen_vals, t_eigen_vecs, EshelbianCore::f, EshelbianCore::d_f,
EshelbianCore::dd_f, t_sym, nbUniq[gg]);
t_dP(L, J) =
t_L(i, j, L) *
((t_diff2_uP2(i, j, k, l) + t_diff2_uP2(k, l, i, j)) * t_L(k, l, J)) /
2.;
} else {
t_dP(L, J) = 0;
}
t_dP(L, J) -= (1 + alphaU * ts_a) *
(t_L(i, j, L) *
((t_D(i, j, m, n) * t_diff(m, n, k, l)) * t_L(k, l, J)));
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor2(K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 6; ++cc) {
const double b = a * t_row_base_fun * t_col_base_fun;
t_m(L, J) += b * t_dP(L, J);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_eigen_vals;
++t_eigen_vecs;
}
}
EntData &col_data) {
auto t_L = symm_L_tensor();
auto t_diff = diff_tensor();
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2), &m(r + 0, c + 3),
&m(r + 0, c + 4), &m(r + 0, c + 5),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2), &m(r + 1, c + 3),
&m(r + 1, c + 4), &m(r + 1, c + 5),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2), &m(r + 2, c + 3),
&m(r + 2, c + 4), &m(r + 2, c + 5),
&m(r + 3, c + 0), &m(r + 3, c + 1), &m(r + 3, c + 2), &m(r + 3, c + 3),
&m(r + 3, c + 4), &m(r + 3, c + 5),
&m(r + 4, c + 0), &m(r + 4, c + 1), &m(r + 4, c + 2), &m(r + 4, c + 3),
&m(r + 4, c + 4), &m(r + 4, c + 5),
&m(r + 5, c + 0), &m(r + 5, c + 1), &m(r + 5, c + 2), &m(r + 5, c + 3),
&m(r + 5, c + 4), &m(r + 5, c + 5)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_log_streach_h1 =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTotalTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(dataAtPts->eigenVecs);
auto &nbUniq = dataAtPts->nbUniq;
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(dataAtPts->matD);
constexpr double nohat_k = 1. / 4;
constexpr double hat_k = 1. / 8;
double mu = dataAtPts->mu;
double lambda = dataAtPts->lambda;
constexpr double third = boost::math::constants::third<double>();
auto t_diff_deviator = diff_deviator(diff_tensor());
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
// Work of symmetric tensor on undefined tensor is equal to the work of
// the symmetric part of it
t_sym(i, j) = (t_approx_P_adjont_dstretch(i, j) ||
t_sym(i, j) /= 2.0;
auto t_diff2_uP2 = EigenMatrix::getDiffDiffMat(
t_eigen_vals, t_eigen_vecs, EshelbianCore::f, EshelbianCore::d_f,
EshelbianCore::dd_f, t_sym, nbUniq[gg]);
t_dP(L, J) =
t_L(i, j, L) *
((t_diff2_uP2(i, j, k, l) + t_diff2_uP2(k, l, i, j)) * t_L(k, l, J)) /
2.;
} else {
t_dP(L, J) = 0;
}
double log_det = t_log_streach_h1(i, i);
double log_det2 = log_det * log_det;
t_dev(i, j) = t_log_streach_h1(i, j) - t_kd(i, j) * (third * log_det);
double dev_norm2 = t_dev(i, j) * t_dev(i, j);
auto A = 2 * mu * std::exp(nohat_k * dev_norm2);
auto B = lambda * std::exp(hat_k * log_det2) * log_det;
t_A_diff(i, j) =
(A * 2 * nohat_k) * (t_dev(k, l) * t_diff_deviator(k, l, i, j));
t_B_diff(i, j) = (B * 2 * hat_k) * log_det * t_kd(i, j) +
lambda * std::exp(hat_k * log_det2) * t_kd(i, j);
t_dT(i, j, k, l) =
t_A_diff(i, j) * (t_dev(m, n) * t_diff_deviator(m, n, k, l))
+
A * t_diff_deviator(m, n, i, j) *
t_diff_deviator(m, n, k, l)
+
t_B_diff(i, j) * t_kd(k, l);
t_dP(L, J) -= t_L(i, j, L) * ((
t_dT(i, j, k, l)
+
(alphaU * ts_a) *
(t_D(i, j, m, n) * t_diff(m, n, k, l)
)) *
t_L(k, l, J));
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor2(K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 6; ++cc) {
const double b = a * t_row_base_fun * t_col_base_fun;
t_m(L, J) += b * t_dP(L, J);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_log_streach_h1;
++t_eigen_vals;
++t_eigen_vecs;
}
}
EntData &col_data) {
auto t_L = symm_L_tensor();
auto t_diff = diff_tensor();
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2), &m(r + 0, c + 3),
&m(r + 0, c + 4), &m(r + 0, c + 5),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2), &m(r + 1, c + 3),
&m(r + 1, c + 4), &m(r + 1, c + 5),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2), &m(r + 2, c + 3),
&m(r + 2, c + 4), &m(r + 2, c + 5),
&m(r + 3, c + 0), &m(r + 3, c + 1), &m(r + 3, c + 2), &m(r + 3, c + 3),
&m(r + 3, c + 4), &m(r + 3, c + 5),
&m(r + 4, c + 0), &m(r + 4, c + 1), &m(r + 4, c + 2), &m(r + 4, c + 3),
&m(r + 4, c + 4), &m(r + 4, c + 5),
&m(r + 5, c + 0), &m(r + 5, c + 1), &m(r + 5, c + 2), &m(r + 5, c + 3),
&m(r + 5, c + 4), &m(r + 5, c + 5)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto r_P_du = getFTensor4FromMat<3, 3, 3, 3>(dataAtPts->P_du);
auto t_P = getFTensor2FromMat<3, 3>(dataAtPts->PAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchDotTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(dataAtPts->stretchTensorAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(dataAtPts->diffStretchTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(dataAtPts->eigenVecs);
auto &nbUniq = dataAtPts->nbUniq;
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
t_deltaP(i, j) = t_approx_P_adjont_dstretch(i, j) - t_P(i, j);
// Work of symmetric tensor on undefined tensor is equal to the work of the
// symmetric part of it
t_deltaP_sym(i, j) = (t_deltaP(i, j) || t_deltaP(j, i));
t_deltaP_sym(i, j) /= 2.0;
auto t_diff2_uP2 = EigenMatrix::getDiffDiffMat(
t_eigen_vals, t_eigen_vecs, EshelbianCore::f, EshelbianCore::d_f,
EshelbianCore::dd_f, t_deltaP_sym, nbUniq[gg]);
t_dP(L, J) = t_L(i, j, L) * (t_diff2_uP2(i, j, k, l) * t_L(k, l, J));
} else {
t_dP(L, J) = 0;
}
t_Ldiff_u(i, j, L) = t_diff_u(i, j, m, n) * t_L(m, n, L);
t_dP(L, J) -=
t_Ldiff_u(i, j, L) * (r_P_du(i, j, k, l) * t_Ldiff_u(k, l, J));
// viscous stress derivative
t_dP(L, J) -=
(alphaU * ts_a) * (t_L(i, j, L) * (t_diff(i, j, k, l) * t_L(k, l, J)));
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor2(K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 6; ++cc) {
const double b = a * t_row_base_fun * t_col_base_fun;
t_m(L, J) += b * t_dP(L, J);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++r_P_du;
++t_P;
++t_dot_log_u;
++t_u;
++t_diff_u;
++t_eigen_vals;
++t_eigen_vecs;
}
}
EntData &col_data) {
auto t_L = symm_L_tensor();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor3 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2),
&m(r + 3, c + 0), &m(r + 3, c + 1), &m(r + 3, c + 2),
&m(r + 4, c + 0), &m(r + 4, c + 1), &m(r + 4, c + 2),
&m(r + 5, c + 0), &m(r + 5, c + 1), &m(r + 5, c + 2)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
int nb_integration_pts = row_data.getN().size1();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor3(K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
double v = a * t_row_base_fun * t_col_base_fun;
t_m(L, k) += v * t_approx_P_adjont_log_du_domega(k, L);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
EntData &col_data) {
int nb_integration_pts = getGaussPts().size2();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(dataAtPts->leviKirchoffdPAtPts);
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
double b = a * t_row_base_fun;
auto t_col_base_fun = col_data.getFTensor1N<3>(gg, 0);
auto t_m = get_ftensor2(K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(k, i) += b * (t_levi_kirchoff_dP(i, l, k) * t_col_base_fun(l));
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_dP;
}
}
EntData &col_data) {
int nb_integration_pts = getGaussPts().size2();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor1 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c), &m(r + 1, c), &m(r + 2, c));
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(dataAtPts->leviKirchoffdPAtPts);
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
double b = a * t_row_base_fun;
auto t_col_base_fun = col_data.getFTensor2N<3, 3>(gg, 0);
auto t_m = get_ftensor1(K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs; ++cc) {
t_m(k) += b * (t_levi_kirchoff_dP(i, j, k) * t_col_base_fun(i, j));
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_dP;
}
}
EntData &col_data) {
int nb_integration_pts = getGaussPts().size2();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_domega =
getFTensor2FromMat<3, 3>(dataAtPts->leviKirchoffdOmegaAtPts);
int row_nb_base_functions = row_data.getN().size2();
auto t_row_base_fun = row_data.getFTensor0N();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_m = get_ftensor2(K, 3 * rr, 0);
const double b = a * t_row_base_fun;
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(k, l) += (b * t_col_base_fun) * t_levi_kirchoff_domega(k, l);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_domega;
}
}
EntData &col_data) {
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r + 0, c + 0), &m(r + 0, c + 1), &m(r + 0, c + 2),
&m(r + 1, c + 0), &m(r + 1, c + 1), &m(r + 1, c + 2),
&m(r + 2, c + 0), &m(r + 2, c + 1), &m(r + 2, c + 2)
);
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(dataAtPts->hdOmegaAtPts);
int row_nb_base_functions = row_data.getN().size2() / 3;
auto t_row_base_fun = row_data.getFTensor1N<3>();
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
constexpr auto t_kd = FTensor::Kronecker_Delta<int>();
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
t_PRT(i, k) = t_row_base_fun(j) * t_h_domega(i, j, k);
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor2(K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(i, j) += (a * t_col_base_fun) * t_PRT(i, j);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_h_domega;
}
}
EntData &col_data) {
int nb_integration_pts = row_data.getN().size1();
int row_nb_dofs = row_data.getIndices().size();
int col_nb_dofs = col_data.getIndices().size();
auto get_ftensor2 = [](MatrixDouble &m, const int r, const int c) {
&m(r, c + 0), &m(r, c + 1), &m(r, c + 2));
};
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(dataAtPts->hdOmegaAtPts);
int row_nb_base_functions = row_data.getN().size2() / 9;
auto t_row_base_fun = row_data.getFTensor2N<3, 3>();
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a = v * t_w;
int rr = 0;
for (; rr != row_nb_dofs; ++rr) {
t_PRT(k) = t_row_base_fun(i, j) * t_h_domega(i, j, k);
auto t_col_base_fun = col_data.getFTensor0N(gg, 0);
auto t_m = get_ftensor2(K, rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(j) += (a * t_col_base_fun) * t_PRT(j);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_h_domega;
}
}
EntData &data) {
auto create_tag = [this](const std::string tag_name, const int size) {
double def_VAL[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
Tag th;
CHKERR postProcMesh.tag_get_handle(tag_name.c_str(), size, MB_TYPE_DOUBLE,
th, MB_TAG_CREAT | MB_TAG_SPARSE,
def_VAL);
return th;
};
Tag th_w = create_tag("SpatialDisplacement", 3);
Tag th_omega = create_tag("Omega", 3);
Tag th_approxP = create_tag("Piola1Stress", 9);
Tag th_sigma = create_tag("CauchyStress", 9);
Tag th_log_u = create_tag("LogSpatialStretch", 9);
Tag th_u = create_tag("SpatialStretch", 9);
Tag th_h = create_tag("h", 9);
Tag th_X = create_tag("X", 3);
Tag th_detF = create_tag("detF", 1);
Tag th_angular_momentum = create_tag("AngularMomentum", 3);
Tag th_u_eig_vec = create_tag("SpatialStretchEigenVec", 9);
Tag th_u_eig_vals = create_tag("SpatialStretchEigenVals", 3);
Tag th_traction = create_tag("traction", 3);
Tag th_disp = create_tag("U", 3);
Tag th_disp_error = create_tag("U_ERROR", 1);
auto t_w = getFTensor1FromMat<3>(dataAtPts->wL2AtPts);
auto t_omega = getFTensor1FromMat<3>(dataAtPts->rotAxisAtPts);
auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
auto t_log_u =
getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(dataAtPts->stretchTensorAtPts);
auto t_R = getFTensor2FromMat<3, 3>(dataAtPts->rotMatAtPts);
auto t_approx_P = getFTensor2FromMat<3, 3>(dataAtPts->approxPAtPts);
auto t_levi_kirchoff = getFTensor1FromMat<3>(dataAtPts->leviKirchoffAtPts);
auto t_coords = getFTensor1CoordsAtGaussPts();
auto t_normal = getFTensor1NormalsAtGaussPts();
auto t_disp = getFTensor1FromMat<3>(dataAtPts->wH1AtPts);
auto set_float_precision = [](const double x) {
if (std::abs(x) < std::numeric_limits<float>::epsilon())
return 0.;
else
return x;
};
// scalars
auto save_scal_tag = [&](auto &th, auto v, const int gg) {
v = set_float_precision(v);
CHKERR postProcMesh.tag_set_data(th, &mapGaussPts[gg], 1, &v);
};
// vectors
auto save_vec_tag = [&](auto &th, auto &t_d, const int gg) {
t_v(i) = t_d(i);
for (auto &a : v.data())
a = set_float_precision(a);
CHKERR postProcMesh.tag_set_data(th, &mapGaussPts[gg], 1,
&*v.data().begin());
};
// tensors
&m(0, 0), &m(0, 1), &m(0, 2),
&m(1, 0), &m(1, 1), &m(1, 2),
&m(2, 0), &m(2, 1), &m(2, 2));
auto save_mat_tag = [&](auto &th, auto &t_d, const int gg) {
t_m(i, j) = t_d(i, j);
for (auto &v : m.data())
v = set_float_precision(v);
CHKERR postProcMesh.tag_set_data(th, &mapGaussPts[gg], 1,
&*m.data().begin());
};
const auto nb_gauss_pts = getGaussPts().size2();
for (auto gg = 0; gg != nb_gauss_pts; ++gg) {
t_traction(i) = t_approx_P(i, j) * t_normal(j) / t_normal.l2();
// vectors
CHKERR save_vec_tag(th_w, t_w, gg);
CHKERR save_vec_tag(th_X, t_coords, gg);
CHKERR save_vec_tag(th_omega, t_omega, gg);
CHKERR save_vec_tag(th_traction, t_traction, gg);
// tensors
CHKERR save_mat_tag(th_h, t_h, gg);
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_log_u_tmp(ii, jj) = t_log_u(ii, jj);
CHKERR save_mat_tag(th_log_u, t_log_u_tmp, gg);
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_u_tmp(ii, jj) = t_u(ii, jj);
CHKERR save_mat_tag(th_u, t_u_tmp, gg);
CHKERR save_mat_tag(th_approxP, t_approx_P, gg);
CHKERR save_vec_tag(th_disp, t_disp, gg);
double u_error = sqrt((t_disp(i) - t_w(i)) * (t_disp(i) - t_w(i)));
CHKERR save_scal_tag(th_disp_error, u_error, gg);
const double jac = determinantTensor3by3(t_h);
t_cauchy(i, j) = (1. / jac) * (t_approx_P(i, k) * t_h(j, k));
CHKERR save_mat_tag(th_sigma, t_cauchy, gg);
CHKERR postProcMesh.tag_set_data(th_detF, &mapGaussPts[gg], 1, &jac);
t_levi(k) = t_levi_kirchoff(k);
CHKERR postProcMesh.tag_set_data(th_angular_momentum, &mapGaussPts[gg], 1,
&t_levi(0));
auto get_eiegn_vector_symmetric = [&](auto &t_u) {
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_m(ii, jj) = t_u(ii, jj);
VectorDouble3 eigen_values(3);
auto t_eigen_values = getFTensor1FromArray<3>(eigen_values);
CHKERR computeEigenValuesSymmetric(t_m, t_eigen_values);
CHKERR postProcMesh.tag_set_data(th_u_eig_vec, &mapGaussPts[gg], 1,
&*m.data().begin());
CHKERR postProcMesh.tag_set_data(th_u_eig_vals, &mapGaussPts[gg], 1,
&*eigen_values.data().begin());
};
CHKERR get_eiegn_vector_symmetric(t_u);
++t_w;
++t_h;
++t_log_u;
++t_u;
++t_omega;
++t_R;
++t_approx_P;
++t_levi_kirchoff;
++t_coords;
++t_normal;
++t_disp;
}
}
if (type == MBTET) {
int nb_integration_pts = data.getN().size1();
auto v = getVolume();
auto t_w = getFTensor0IntegrationWeight();
auto t_P = getFTensor2FromMat<3, 3>(dataAtPts->approxPAtPts);
auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
for (int gg = 0; gg != nb_integration_pts; ++gg) {
const double a = t_w * v;
// FIXME: this is wrong, energy should be calculated in material
(*energy) += a * t_P(i, J) * t_h(i, J);
++t_w;
++t_P;
++t_h;
}
}
}
} // namespace EshelbianPlasticity
static Index< 'L', 3 > L
static Index< 'J', 3 > J
static Number< 2 > N2
static Number< 1 > N1
static Number< 0 > N0
constexpr double third
Eshelbian plasticity interface.
constexpr double a
static const double eps
Kronecker Delta class symmetric.
Kronecker Delta class.
@ MF_ZERO
Definition: definitions.h:98
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:447
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:346
@ MOFEM_OPERATION_UNSUCCESSFUL
Definition: definitions.h:34
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:416
#define CHKERR
Inline error check.
Definition: definitions.h:535
FTensor::Index< 'n', SPACE_DIM > n
FTensor::Index< 'm', SPACE_DIM > m
constexpr auto t_kd
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
FTensor::Index< 'i', SPACE_DIM > i
static double lambda
const double c
speed of light (cm/ns)
double D
const double v
phase velocity of light in medium (cm/ns)
static __CLPK_integer lapack_dposv(char uplo, __CLPK_integer n, __CLPK_integer nrhs, __CLPK_doublereal *a, __CLPK_integer lda, __CLPK_doublereal *b, __CLPK_integer ldb)
Definition: lapack_wrap.h:211
MoFEM::TsCtx * ts_ctx
Definition: level_set.cpp:1932
FTensor::Index< 'l', 3 > l
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
FTensor::Ddg< double, 3, 3 > getDiffMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f, Fun< double > d_f, const int nb)
Get the Diff Mat object.
FTensor::Tensor2_symmetric< double, 3 > getMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f)
Get the Mat object.
FTensor::Ddg< double, 3, 3 > getDiffDiffMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f, Fun< double > d_f, Fun< double > dd_f, FTensor::Tensor2< double, 3, 3 > &t_S, const int nb)
auto get_uniq_nb(double *ptr)
auto diff_deviator(FTensor::Ddg< double, 3, 3 > &&t_diff_stress)
auto get_diff_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
static constexpr auto size_symm
auto sort_eigen_vals(FTensor::Tensor1< double, DIM > &eig, FTensor::Tensor2< double, DIM, DIM > &eigen_vec)
auto get_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
auto is_eq(const double &a, const double &b)
auto get_diff2_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
Tensors class implemented by Walter Landry.
Definition: FTensor.hpp:51
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
VectorBoundedArray< double, 3 > VectorDouble3
Definition: Types.hpp:92
UBlasMatrix< double > MatrixDouble
Definition: Types.hpp:77
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
constexpr AssemblyType A
constexpr double t
plate stiffness
Definition: plate.cpp:59
static boost::function< double(const double)> dd_f
static boost::function< double(const double)> inv_f
static enum StretchSelector stretchSelector
static boost::function< double(const double)> d_f
static boost::function< double(const double)> f
boost::shared_ptr< TractionBcVec > bcData
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
boost::shared_ptr< BcDispVec > bcDispPtr
MoFEMErrorCode integrate(EntData &data)
moab::Interface & postProcMesh
std::vector< EntityHandle > & mapGaussPts
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
MoFEMErrorCode integrate(EntData &data)
boost::shared_ptr< BcRotVec > bcRotPtr
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrateHencky(EntData &row_data, EntData &col_data)
MoFEMErrorCode integratePiola(EntData &row_data, EntData &col_data)
MoFEMErrorCode integratePolyconvexHencky(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integratePiola(EntData &data)
MoFEMErrorCode integratePolyconvexHencky(EntData &data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrateHencky(EntData &data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
static auto check(const double &a, const double &b)
Set integration rule to boundary elements.
Add operators pushing bases from local to physical configuration.
Data on single entity (This is passed as argument to DataOperator::doWork)
FTensor::Tensor2< FTensor::PackPtr< double *, Tensor_Dim0 *Tensor_Dim1 >, Tensor_Dim0, Tensor_Dim1 > getFTensor2DiffN(FieldApproximationBase base)
Get derivatives of base functions for Hdiv space.
FTensor::Tensor2< FTensor::PackPtr< double *, Tensor_Dim0 *Tensor_Dim1 >, Tensor_Dim0, Tensor_Dim1 > getFTensor2N(FieldApproximationBase base)
Get base functions for Hdiv/Hcurl spaces.
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorDouble & getFieldData() const
get dofs values
FTensor::Tensor1< FTensor::PackPtr< double *, Tensor_Dim >, Tensor_Dim > getFTensor1N(FieldApproximationBase base)
Get base functions for Hdiv/Hcurl spaces.
const VectorDofs & getFieldDofs() const
get dofs data stature FEDofEntity
const VectorInt & getIndices() const
Get global indices of dofs on entity.