Implementation of operators.
#include <boost/math/constants/constants.hpp>
constexpr static auto size_symm = (3 * (3 + 1)) / 2;
return t_diff;
};
t_L(0, 0, 0) = 1;
t_L(1, 1, 3) = 1;
t_L(2, 2, 5) = 1;
t_L(1, 0, 1) = 1;
t_L(2, 0, 2) = 1;
t_L(2, 1, 4) = 1;
return t_L;
}
template <class T> struct TensorTypeExtractor {
typedef typename std::remove_pointer<T>::type
Type;
};
template <
class T,
int I>
struct TensorTypeExtractor<
FTensor::PackPtr<T, I>> {
typedef typename std::remove_pointer<T>::type
Type;
};
template <typename T>
t_Omega(
i,
j) = FTensor::levi_civita<double>(
i,
j,
k) * t_omega(
k);
const auto angle =
sqrt(t_omega(
i) * t_omega(
i)) + std::numeric_limits<double>::epsilon();
t_R(
i,
j) += t_Omega(
i,
j);
return t_R;
}
const auto a = sin(angle) / angle;
t_R(
i,
j) +=
a * t_Omega(
i,
j);
return t_R;
const auto ss_2 = sin(angle / 2.);
const auto b = 2. * ss_2 * ss_2 / (angle * angle);
t_R(
i,
j) += b * t_Omega(
i,
k) * t_Omega(
k,
j);
return t_R;
}
template <typename T>
const auto angle =
sqrt(t_omega(
i) * t_omega(
i)) + std::numeric_limits<double>::epsilon();
t_diff_R(
i,
j,
k) = FTensor::levi_civita<double>(
i,
j,
k);
return t_diff_R;
}
const auto ss = sin(angle);
const auto a = ss / angle;
t_diff_R(
i,
j,
k) =
a * FTensor::levi_civita<double>(
i,
j,
k);
t_Omega(
i,
j) = FTensor::levi_civita<double>(
i,
j,
k) * t_omega(
k);
const auto angle2 = angle * angle;
const auto cc = cos(angle);
const auto diff_a = (angle * cc - ss) / angle2;
t_diff_R(
i,
j,
k) += diff_a * t_Omega(
i,
j) * (t_omega(
k) / angle);
return t_diff_R;
const auto ss_2 = sin(angle / 2.);
const auto cc_2 = cos(angle / 2.);
const auto b = 2. * ss_2 * ss_2 / angle2;
b * (t_Omega(
i,
l) * FTensor::levi_civita<double>(
l,
j,
k) +
FTensor::levi_civita<double>(
i,
l,
k) * t_Omega(
l,
j));
const auto diff_b =
(2. * angle * ss_2 * cc_2 - 4. * ss_2 * ss_2) / (angle2 * angle);
diff_b * t_Omega(
i,
l) * t_Omega(
l,
j) * (t_omega(
k) / angle);
return t_diff_R;
}
template <typename T>
constexpr double eps = 1e-10;
for (
int l = 0;
l != 3; ++
l) {
t_omega_c(
i) = t_omega(
i);
t_omega_c(
l) += std::complex<double>(0,
eps);
for (
int i = 0;
i != 3; ++
i) {
for (
int j = 0;
j != 3; ++
j) {
for (
int k = 0;
k != 3; ++
k) {
t_diff2_R(
i,
j,
k,
l) = t_diff_R_c(
i,
j,
k).imag() /
eps;
}
}
}
}
return t_diff2_R;
}
struct isEq {
static inline auto check(
const double &
a,
const double &b) {
constexpr double eps = std::numeric_limits<float>::epsilon();
}
};
inline auto is_eq(
const double &
a,
const double &b) {
};
template <
int DIM>
inline auto get_uniq_nb(
double *ptr) {
std::array<double, DIM> tmp;
std::copy(ptr, &ptr[DIM], tmp.begin());
std::sort(tmp.begin(), tmp.end());
isEq::absMax = std::max(std::abs(tmp[0]), std::abs(tmp[DIM - 1]));
constexpr double eps = std::numeric_limits<float>::epsilon();
return std::distance(tmp.begin(), std::unique(tmp.begin(), tmp.end(),
is_eq));
}
template <int DIM>
std::max(std::max(std::abs(eig(0)), std::abs(eig(1))), std::abs(eig(2)));
if (
is_eq(eig(0), eig(1))) {
}
else if (
is_eq(eig(0), eig(2))) {
}
else if (
is_eq(eig(1), eig(2))) {
}
eigen_vec(
i, 0), eigen_vec(
i, 1), eigen_vec(
i, 2),
eigen_vec(
j, 0), eigen_vec(
j, 1), eigen_vec(
j, 2),
eigen_vec(
k, 0), eigen_vec(
k, 1), eigen_vec(
k, 2)};
{
eigen_vec(
i,
j) = eigen_vec_c(
i,
j);
}
}
int nb_integration_pts = getGaussPts().size2();
dataAtPts->hAtPts.resize(9, nb_integration_pts,
false);
dataAtPts->hdOmegaAtPts.resize(9 * 3, nb_integration_pts,
false);
dataAtPts->hdstretchAtPts.resize(9 * 6, nb_integration_pts,
false);
dataAtPts->leviKirchoffAtPts.resize(3, nb_integration_pts,
false);
dataAtPts->leviKirchoffdPAtPts.resize(9 * 3, nb_integration_pts,
false);
dataAtPts->leviKirchoffdOmegaAtPts.resize(9, nb_integration_pts,
false);
dataAtPts->adjontPdstretchAtPts.resize(9, nb_integration_pts,
false);
false);
dataAtPts->rotMatAtPts.resize(9, nb_integration_pts,
false);
dataAtPts->diffRotMatAtPts.resize(27, nb_integration_pts,
false);
dataAtPts->StretchTensorAtPts.resize(6, nb_integration_pts,
false);
dataAtPts->diffStretchTensorAtPts.resize(36, nb_integration_pts,
false);
dataAtPts->eigenVals.resize(3, nb_integration_pts,
false);
dataAtPts->eigenVecs.resize(9, nb_integration_pts,
false);
dataAtPts->nbUniq.resize(nb_integration_pts,
false);
auto t_h = getFTensor2FromMat<3, 3>(
dataAtPts->hAtPts);
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(
dataAtPts->hdOmegaAtPts);
auto t_h_du = getFTensor3FromMat<3, 3, size_symm>(
dataAtPts->hdstretchAtPts);
auto t_levi_kirchoff = getFTensor1FromMat<3>(
dataAtPts->leviKirchoffAtPts);
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(
dataAtPts->leviKirchoffdPAtPts);
auto t_levi_kirchoff_domega =
getFTensor2FromMat<3, 3>(
dataAtPts->leviKirchoffdOmegaAtPts);
auto t_approx_P_adjont_dstretch =
getFTensor2FromMat<3, 3>(
dataAtPts->adjontPdstretchAtPts);
auto t_approx_P_adjont_du =
getFTensor1FromMat<size_symm>(
dataAtPts->adjontPdUAtPts);
auto t_approx_P_adjont_du_dP =
getFTensor3FromMat<3, 3, size_symm>(
dataAtPts->adjontPdUdPAtPts);
auto t_approx_P_adjont_du_domega =
getFTensor2FromMat<3, size_symm>(
dataAtPts->adjontPdUdOmegaAtPts);
auto t_omega = getFTensor1FromMat<3>(
dataAtPts->rotAxisAtPts);
auto t_R = getFTensor2FromMat<3, 3>(
dataAtPts->rotMatAtPts);
auto t_diff_R = getFTensor3FromMat<3, 3, 3>(
dataAtPts->diffRotMatAtPts);
auto t_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(
dataAtPts->StretchTensorAtPts);
auto t_approx_P = getFTensor2FromMat<3, 3>(
dataAtPts->approxPAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(
dataAtPts->diffStretchTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(
dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(
dataAtPts->eigenVecs);
auto t_grad_h1 = getFTensor2FromMat<3, 3>(
dataAtPts->wGradH1AtPts);
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_C1(
i,
j) = t_h1(
k,
i) * t_h1(
k,
j);
eigen_vec(
i,
j) = t_C1(
i,
j);
CHKERR computeEigenValuesSymmetric(eigen_vec, eig);
auto nb_uniq = get_uniq_nb<3>(&eig(0));
if (nb_uniq < 3) {
sort_eigen_vals<3>(eig, eigen_vec);
}
return 1. / (std::sqrt(
v) + std::numeric_limits<double>::epsilon());
});
t_R_h1(
i,
j) = t_h1(
i,
k) * t_inv_u_h1(
k,
j);
auto t0_diff =
t_diff_R(
i,
j,
k) = t0_diff(
i,
j,
k);
eigen_vec(
i,
j) = t_log_u(
i,
j);
CHKERR computeEigenValuesSymmetric(eigen_vec, eig);
nbUniq[gg] = get_uniq_nb<3>(&eig(0));
if (nbUniq[gg] < 3) {
sort_eigen_vals<3>(eig, eigen_vec);
}
t_eigen_vals(
i) = eig(
i);
t_eigen_vecs(
i,
j) = eigen_vec(
i,
j);
auto t_u_tmp =
t_u(
i,
j) = t_u_tmp(
i,
j);
auto t_diff_u_tmp =
t_diff_u(
i,
j,
k,
l) = t_diff_u_tmp(
i,
j,
k,
l);
t_Ldiff_u(
i,
j,
L) = t_diff_u(
i,
j,
m,
n) * t_L(
m,
n,
L);
t_RR(
l,
j) = t_R_h1(
l,
i) * t_R(
i,
j);
t_diff_RR(
l,
j,
k) = t_R_h1(
l,
i) * t_diff_R(
i,
j,
k);
t_h(
i,
j) = t_RR(
i,
k) * t_u(
k,
j);
t_h_domega(
i,
j,
k) = t_diff_RR(
i,
l,
k) * t_u(
l,
j);
t_h_du(
i,
j,
L) = t_RR(
i,
k) * t_Ldiff_u(
k,
j,
L);
levi_civita(
i,
j,
k) * (t_approx_P(
k,
j) * t_RR(
k,
i));
t_levi_kirchoff_dP(
l,
j,
k) = levi_civita(
i,
j,
k) * t_RR(
l,
i);
t_levi_kirchoff_domega(
k,
l) =
levi_civita(
i,
j,
k) * (t_approx_P(
m,
j) * t_diff_RR(
m,
i,
l));
t_approx_P_adjont_dstretch(
i,
j) = t_approx_P(
k,
j) * t_RR(
k,
i);
t_approx_P_adjont_du(
L) =
t_Ldiff_u(
i,
j,
L) * t_approx_P_adjont_dstretch(
i,
j);
t_approx_P_adjont_du_dP(
i,
j,
L) = t_h_du(
i,
j,
L);
t_approx_P_adjont_du_domega(
m,
L) =
t_Ldiff_u(
i,
j,
L) * (t_diff_RR(
k,
i,
m) * t_approx_P(
k,
j));
break;
t_h_domega(
l,
j,
k) = t_R_h1(
l,
i) * t_diff_R(
i,
j,
k);
t_h_du(
l,
j,
L) = t_R_h1(
l,
i) * t_Ldiff_u(
i,
j,
L);
levi_civita(
i,
j,
k) * (t_approx_P(
l,
j) * t_R_h1(
l,
i));
t_levi_kirchoff_dP(
l,
j,
k) = levi_civita(
i,
j,
k) * t_R_h1(
l,
i);
t_levi_kirchoff_domega(
k,
l) = 0;
t_approx_P_adjont_dstretch(
i,
j) = t_approx_P(
k,
j) * t_R_h1(
k,
i);
t_approx_P_adjont_du(
L) =
t_Ldiff_u(
i,
j,
L) * t_approx_P_adjont_dstretch(
i,
j);
t_approx_P_adjont_du_dP(
i,
j,
L) = t_h_du(
i,
j,
L);
t_approx_P_adjont_du_domega(
m,
L) = 0;
break;
t_h_domega(
i,
j,
k) = t_diff_R(
i,
j,
k);
t_h_du(
i,
j,
L) = t_Ldiff_u(
i,
j,
L);
t_levi_kirchoff(
k) = levi_civita(
i,
j,
k) * t_approx_P(
i,
j);
t_levi_kirchoff_dP(
i,
j,
k) = levi_civita(
i,
j,
k);
t_levi_kirchoff_domega(
k,
l) = 0;
t_approx_P_adjont_dstretch(
i,
j) = t_approx_P(
i,
j);
t_approx_P_adjont_du(
L) =
t_Ldiff_u(
i,
j,
L) * t_approx_P_adjont_dstretch(
i,
j);
t_approx_P_adjont_du_dP(
i,
j,
L) = t_h_du(
i,
j,
L);
t_approx_P_adjont_du_domega(
m,
L) = 0;
break;
}
++t_h;
++t_h_domega;
++t_h_du;
++t_levi_kirchoff;
++t_levi_kirchoff_dP;
++t_levi_kirchoff_domega;
++t_approx_P_adjont_dstretch;
++t_approx_P_adjont_du;
++t_approx_P_adjont_du_dP;
++t_approx_P_adjont_du_domega;
++t_approx_P;
++t_R;
++t_diff_R;
++t_log_u;
++t_u;
++t_diff_u;
++t_eigen_vals;
++t_eigen_vecs;
++t_omega;
++t_grad_h1;
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_div_P = getFTensor1FromMat<3>(
dataAtPts->divPAtPts);
auto t_s_dot_w = getFTensor1FromMat<3>(
dataAtPts->wL2DotAtPts);
if (
dataAtPts->wL2DotDotAtPts.size1() == 0 &&
dataAtPts->wL2DotDotAtPts.size2() != nb_integration_pts) {
dataAtPts->wL2DotDotAtPts.resize(3, nb_integration_pts);
}
auto t_s_dot_dot_w = getFTensor1FromMat<3>(
dataAtPts->wL2DotDotAtPts);
int nb_base_functions = data.
getN().size2();
auto get_ftensor1 = [](
auto &
v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(
i) +=
a * t_row_base_fun * t_div_P(
i);
t_nf(
i) -=
a * t_row_base_fun *
alphaW * t_s_dot_w(
i);
t_nf(
i) -=
a * t_row_base_fun *
alphaRho * t_s_dot_dot_w(
i);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_div_P;
++t_s_dot_w;
++t_s_dot_dot_w;
}
}
int nb_integration_pts = getGaussPts().size2();
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff = getFTensor1FromMat<3>(
dataAtPts->leviKirchoffAtPts);
int nb_base_functions = data.
getN().size2();
auto get_ftensor1 = [](
auto &
v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(
k) += (
a * t_row_base_fun) * t_levi_kirchoff(
k);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff;
}
}
if (
dataAtPts->physicsPtr->dependentVariablesPiola.size()) {
} else {
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_du =
getFTensor1FromMat<size_symm>(
dataAtPts->adjontPdUAtPts);
auto t_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchTensorAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchDotTensorAtPts);
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(
dataAtPts->matD);
auto get_ftensor2 = [](
auto &
v) {
&
v[0], &
v[1], &
v[2], &
v[3], &
v[4], &
v[5]);
};
int nb_base_functions = data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor2(
nF);
t_residual(
L) =
a * (t_approx_P_adjont_du(
L) - t_L(
i,
j,
L) * t_T(
i,
j));
int bb = 0;
for (; bb != nb_dofs / 6; ++bb) {
t_nf(
L) += t_row_base_fun * t_residual(
L);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_approx_P_adjont_du;
++t_log_u;
++t_dot_log_u;
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_du =
getFTensor1FromMat<size_symm>(
dataAtPts->adjontPdUAtPts);
auto t_P = getFTensor2FromMat<3, 3>(
dataAtPts->PAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchDotTensorAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(
dataAtPts->diffStretchTensorAtPts);
auto get_ftensor2 = [](
auto &
v) {
&
v[0], &
v[1], &
v[2], &
v[3], &
v[4], &
v[5]);
};
int nb_base_functions = data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor2(
nF);
t_Ldiff_u(
i,
j,
L) = t_diff_u(
i,
j,
k,
l) * t_L(
k,
l,
L);
a * (t_approx_P_adjont_du(
L) - t_Ldiff_u(
i,
j,
L) * t_P(
i,
j) -
t_L(
i,
j,
L) * t_viscous_P(
i,
j));
int bb = 0;
for (; bb != nb_dofs / 6; ++bb) {
t_nf(
L) += t_row_base_fun * t_residual(
L);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_approx_P_adjont_du;
++t_P;
++t_dot_log_u;
++t_diff_u;
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_h = getFTensor2FromMat<3, 3>(
dataAtPts->hAtPts);
auto t_omega_dot = getFTensor1FromMat<3>(
dataAtPts->rotAxisDotAtPts);
int nb_base_functions = data.
getN().size2() / 3;
auto get_ftensor1 = [](
auto &
v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(
i) +=
a * t_row_base_fun(
j) * t_residuum(
i,
j);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_h;
++t_omega_dot;
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_h = getFTensor2FromMat<3, 3>(
dataAtPts->hAtPts);
auto t_omega_dot = getFTensor1FromMat<3>(
dataAtPts->rotAxisDotAtPts);
int nb_base_functions = data.
getN().size2() / 9;
auto get_ftensor0 = [](
auto &
v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor0(
nF);
int bb = 0;
for (; bb != nb_dofs; ++bb) {
t_nf +=
a * t_row_base_fun(
i,
j) * t_residuum(
i,
j);
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_base_fun;
}
++t_w;
++t_h;
++t_omega_dot;
}
}
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_s_w = getFTensor1FromMat<3>(
dataAtPts->wL2AtPts);
int nb_base_functions = data.
getN().size2() / 3;
auto get_ftensor1 = [](
auto &
v) {
};
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
double div_row_base = t_row_diff_base_fun(
i,
i);
t_nf(
i) +=
a * div_row_base * t_s_w(
i);
++t_nf;
++t_row_diff_base_fun;
}
for (; bb != nb_base_functions; ++bb) {
++t_row_diff_base_fun;
}
++t_w;
++t_s_w;
}
}
if (bc.faces.find(fe_ent) != bc.faces.end()) {
int nb_integration_pts = data.
getN().size1();
auto t_normal = getFTensor1Normal();
auto t_w = getFTensor0IntegrationWeight();
int nb_base_functions = data.
getN().size2() / 3;
auto get_ftensor1 = [](
auto &
v) {
};
t_bc_disp(
i) *= getFEMethod()->ts_t;
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_bc_res(
i) = t_bc_disp(
i);
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_w * (t_row_base_fun(
j) * t_normal(
j)) * t_bc_res(
i) * 0.5;
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
}
}
}
}
if (bc.faces.find(fe_ent) != bc.faces.end()) {
int nb_integration_pts = data.
getN().size1();
auto t_normal = getFTensor1Normal();
auto t_w = getFTensor0IntegrationWeight();
int nb_base_functions = data.
getN().size2() / 3;
auto get_ftensor1 = [](
auto &
v) {
};
double theta = bc.theta;
theta *= getFEMethod()->ts_t;
const double a = sqrt(t_normal(
i) * t_normal(
i));
t_omega(
i) = t_normal(
i) * (theta /
a);
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_delta(
i) = t_center(
i) - t_coords(
i);
t_disp(
i) = t_delta(
i) - t_R(
i,
j) * t_delta(
j);
auto t_nf = get_ftensor1(
nF);
int bb = 0;
for (; bb != nb_dofs / 3; ++bb) {
t_nf(
i) -= t_w * (t_row_base_fun(
j) * t_normal(
j)) * t_disp(
i) * 0.5;
++t_nf;
++t_row_base_fun;
}
for (; bb != nb_base_functions; ++bb)
++t_row_base_fun;
++t_w;
++t_coords;
}
}
}
}
int operator()(int p_row, int p_col, int p_data) const {
return 2 * (p_data + 1);
}
};
if (
ts_ctx == CTX_TSSETIFUNCTION) {
{HDIV});
fe.getOpPtrVector().push_back(
new OpTractionBc(std::string("P") , *this));
fe.ts_t = ts_t;
this->getCacheWeakPtr());
}
}
auto t_normal = getFTensor1Normal();
const double nrm2 = sqrt(t_normal(
i) * t_normal(
i));
t_unit_normal(
i) = t_normal(
i) / nrm2;
int nb_integration_pts = data.
getN().size1();
int nb_base_functions = data.
getN().size2() / 3;
double ts_t = getFEMethod()->ts_t;
auto integrate_matrix = [&]() {
auto t_w = getFTensor0IntegrationWeight();
matPP.resize(nb_dofs / 3, nb_dofs / 3,
false);
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double a = t_row_base_fun(
i) * t_unit_normal(
i);
for (int cc = 0; cc != nb_dofs / 3; ++cc) {
const double b = t_col_base_fun(
i) * t_unit_normal(
i);
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
};
auto integrate_rhs = [&](auto &bc) {
auto t_w = getFTensor0IntegrationWeight();
vecPv.resize(3, nb_dofs / 3,
false);
double ts_t = getFEMethod()->ts_t;
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double t = ts_t * t_w * t_row_base_fun(
i) * t_unit_normal(
i);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
vecPv(dd, rr) +=
t * bc.vals[dd];
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
};
auto integrate_rhs_cook = [&](auto &bc) {
vecPv.resize(3, nb_dofs / 3,
false);
auto t_w = getFTensor0IntegrationWeight();
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
auto calc_tau = [](double y) {
y -= 44;
y /= (60 - 44);
return -y * (y - 1) / 0.25;
};
const double tau = calc_tau(t_coords(1));
int rr = 0;
for (; rr != nb_dofs / 3; ++rr) {
const double t = ts_t * t_w * t_row_base_fun(
i) * t_unit_normal(
i);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
vecPv(dd, rr) +=
t * tau * bc.vals[dd];
++t_row_base_fun;
}
for (; rr != nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_coords;
}
};
if (bc.faces.find(fe_ent) != bc.faces.end()) {
if (nb_dofs) {
if (std::regex_match(bc.blockName, std::regex(".*COOK.*")))
CHKERR integrate_rhs_cook(bc);
else
const auto info =
nb_dofs / 3, &*
vecPv.data().begin(), nb_dofs / 3);
if (info > 0)
"The leading minor of order %i is "
"not positive; definite;\nthe "
"solution could not be computed",
info);
for (int dd = 0; dd != 3; ++dd)
if (bc.flags[dd])
for (int rr = 0; rr != nb_dofs / 3; ++rr)
}
}
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c + 0), &
m(r + 1,
c + 1), &
m(r + 2,
c + 2));
};
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_m = get_ftensor1(
K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
double div_col_base = t_col_diff_base_fun(
i,
i);
t_m(
i) +=
a * t_row_base_fun * div_col_base;
++t_m;
++t_col_diff_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
if (
alphaW < std::numeric_limits<double>::epsilon() &&
alphaRho < std::numeric_limits<double>::epsilon())
const int nb_integration_pts = row_data.
getN().size1();
const int row_nb_dofs = row_data.
getIndices().size();
&
m(r + 0,
c + 0), &
m(r + 1,
c + 1), &
m(r + 2,
c + 2)
);
};
auto t_w = getFTensor0IntegrationWeight();
int row_nb_base_functions = row_data.
getN().size2();
double ts_scale =
alphaW * getTSa();
if (std::abs(
alphaRho) > std::numeric_limits<double>::epsilon())
for (int gg = 0; gg != nb_integration_pts; ++gg) {
double a =
v * t_w * ts_scale;
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_m = get_ftensor1(
K, 3 * rr, 0);
for (int cc = 0; cc != row_nb_dofs / 3; ++cc) {
const double b =
a * t_row_base_fun * t_col_base_fun;
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2),
&
m(r + 3,
c + 0), &
m(r + 3,
c + 1), &
m(r + 3,
c + 2),
&
m(r + 4,
c + 0), &
m(r + 4,
c + 1), &
m(r + 4,
c + 2),
&
m(r + 5,
c + 0), &
m(r + 5,
c + 1), &
m(r + 5,
c + 2));
};
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_du_dP =
getFTensor3FromMat<3, 3, size_symm>(
dataAtPts->adjontPdUdPAtPts);
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor3(
K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
(t_approx_P_adjont_du_dP(
i,
j,
L) * t_col_base_fun(
j)) *
t_row_base_fun;
++t_col_base_fun;
++t_m;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_approx_P_adjont_du_dP;
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c), &
m(r + 1,
c), &
m(r + 2,
c), &
m(r + 3,
c), &
m(r + 4,
c),
};
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_du_dP =
getFTensor3FromMat<3, 3, size_symm>(
dataAtPts->adjontPdUdPAtPts);
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor2(
K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs; ++cc) {
(t_approx_P_adjont_du_dP(
i,
j,
L) * t_col_base_fun(
i,
j)) *
t_row_base_fun;
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_approx_P_adjont_du_dP;
}
}
if (
dataAtPts->physicsPtr->dependentVariablesPiola.size()) {
} else {
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2), &
m(r + 0,
c + 3),
&
m(r + 0,
c + 4), &
m(r + 0,
c + 5),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2), &
m(r + 1,
c + 3),
&
m(r + 1,
c + 4), &
m(r + 1,
c + 5),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2), &
m(r + 2,
c + 3),
&
m(r + 2,
c + 4), &
m(r + 2,
c + 5),
&
m(r + 3,
c + 0), &
m(r + 3,
c + 1), &
m(r + 3,
c + 2), &
m(r + 3,
c + 3),
&
m(r + 3,
c + 4), &
m(r + 3,
c + 5),
&
m(r + 4,
c + 0), &
m(r + 4,
c + 1), &
m(r + 4,
c + 2), &
m(r + 4,
c + 3),
&
m(r + 4,
c + 4), &
m(r + 4,
c + 5),
&
m(r + 5,
c + 0), &
m(r + 5,
c + 1), &
m(r + 5,
c + 2), &
m(r + 5,
c + 3),
&
m(r + 5,
c + 4), &
m(r + 5,
c + 5)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_dstretch =
getFTensor2FromMat<3, 3>(
dataAtPts->adjontPdstretchAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchDotTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(
dataAtPts->StretchTensorAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(
dataAtPts->diffStretchTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(
dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(
dataAtPts->eigenVecs);
int row_nb_base_functions = row_data.
getN().size2();
auto t_D = getFTensor4DdgFromMat<3, 3, 0>(
dataAtPts->matD);
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_sym(
i,
j) = (t_approx_P_adjont_dstretch(
i,
j) ||
t_approx_P_adjont_dstretch(
j,
i));
((t_diff2_uP2(
i,
j,
k,
l) + t_diff2_uP2(
k,
l,
i,
j)) * t_L(
k,
l,
J)) /
2.;
} else {
}
((t_D(
i,
j,
m,
n) * t_diff(
m,
n,
k,
l)) * t_L(
k,
l,
J)));
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor2(
K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 6; ++cc) {
const double b =
a * t_row_base_fun * t_col_base_fun;
t_m(
L,
J) += b * t_dP(
L,
J);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_approx_P_adjont_dstretch;
++t_dot_log_u;
++t_u;
++t_diff_u;
++t_eigen_vals;
++t_eigen_vecs;
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2), &
m(r + 0,
c + 3),
&
m(r + 0,
c + 4), &
m(r + 0,
c + 5),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2), &
m(r + 1,
c + 3),
&
m(r + 1,
c + 4), &
m(r + 1,
c + 5),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2), &
m(r + 2,
c + 3),
&
m(r + 2,
c + 4), &
m(r + 2,
c + 5),
&
m(r + 3,
c + 0), &
m(r + 3,
c + 1), &
m(r + 3,
c + 2), &
m(r + 3,
c + 3),
&
m(r + 3,
c + 4), &
m(r + 3,
c + 5),
&
m(r + 4,
c + 0), &
m(r + 4,
c + 1), &
m(r + 4,
c + 2), &
m(r + 4,
c + 3),
&
m(r + 4,
c + 4), &
m(r + 4,
c + 5),
&
m(r + 5,
c + 0), &
m(r + 5,
c + 1), &
m(r + 5,
c + 2), &
m(r + 5,
c + 3),
&
m(r + 5,
c + 4), &
m(r + 5,
c + 5)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_P_dh0 = getFTensor3FromMat<3, 3, 3>(
dataAtPts->P_dh0);
auto t_P_dh1 = getFTensor3FromMat<3, 3, 3>(
dataAtPts->P_dh1);
auto t_P_dh2 = getFTensor3FromMat<3, 3, 3>(
dataAtPts->P_dh2);
auto t_approx_P_adjont_dstretch =
getFTensor2FromMat<3, 3>(
dataAtPts->adjontPdstretchAtPts);
auto t_P = getFTensor2FromMat<3, 3>(
dataAtPts->PAtPts);
auto t_dot_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchDotTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(
dataAtPts->StretchTensorAtPts);
auto t_diff_u =
getFTensor4DdgFromMat<3, 3, 1>(
dataAtPts->diffStretchTensorAtPts);
auto t_eigen_vals = getFTensor1FromMat<3>(
dataAtPts->eigenVals);
auto t_eigen_vecs = getFTensor2FromMat<3, 3>(
dataAtPts->eigenVecs);
int row_nb_base_functions = row_data.
getN().size2();
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
t_deltaP(
i,
j) = t_approx_P_adjont_dstretch(
i,
j) - t_P(
i,
j);
t_deltaP_sym(
i,
j) = (t_deltaP(
i,
j) || t_deltaP(
j,
i));
t_deltaP_sym(
i,
j) /= 2.0;
t_dP(
L,
J) = t_L(
i,
j,
L) * (t_diff2_uP2(
i,
j,
k,
l) * t_L(
k,
l,
J));
} else {
}
t_Ldiff_u(
i,
j,
L) = t_diff_u(
i,
j,
m,
n) * t_L(
m,
n,
L);
t_Ldiff_u(
i,
j,
L) * (t_P_dh(
i,
j,
k,
l) * t_Ldiff_u(
k,
l,
J));
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor2(
K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 6; ++cc) {
const double b =
a * t_row_base_fun * t_col_base_fun;
t_m(
L,
J) += b * t_dP(
L,
J);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_P_dh0;
++t_P_dh1;
++t_P_dh2;
++t_P;
++t_approx_P_adjont_dstretch;
++t_dot_log_u;
++t_u;
++t_diff_u;
++t_eigen_vals;
++t_eigen_vecs;
}
}
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2),
&
m(r + 3,
c + 0), &
m(r + 3,
c + 1), &
m(r + 3,
c + 2),
&
m(r + 4,
c + 0), &
m(r + 4,
c + 1), &
m(r + 4,
c + 2),
&
m(r + 5,
c + 0), &
m(r + 5,
c + 1), &
m(r + 5,
c + 2)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_approx_P_adjont_du_domega =
getFTensor2FromMat<3, size_symm>(
dataAtPts->adjontPdUdOmegaAtPts);
int row_nb_base_functions = row_data.
getN().size2();
int nb_integration_pts = row_data.
getN().size1();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 6; ++rr) {
auto t_m = get_ftensor3(
K, 6 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
double v =
a * t_row_base_fun * t_col_base_fun;
t_m(
L,
k) +=
v * t_approx_P_adjont_du_domega(
k,
L);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_approx_P_adjont_du_domega;
}
}
int nb_integration_pts = getGaussPts().size2();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(
dataAtPts->leviKirchoffdPAtPts);
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
double b =
a * t_row_base_fun;
auto t_m = get_ftensor2(
K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(
k,
i) += b * (t_levi_kirchoff_dP(
i,
l,
k) * t_col_base_fun(
l));
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_dP;
}
}
int nb_integration_pts = getGaussPts().size2();
&
m(r + 0,
c), &
m(r + 1,
c), &
m(r + 2,
c));
};
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_dP =
getFTensor3FromMat<3, 3, 3>(
dataAtPts->leviKirchoffdPAtPts);
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
double b =
a * t_row_base_fun;
auto t_m = get_ftensor1(
K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs; ++cc) {
t_m(
k) += b * (t_levi_kirchoff_dP(
i,
j,
k) * t_col_base_fun(
i,
j));
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_dP;
}
}
int nb_integration_pts = getGaussPts().size2();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_levi_kirchoff_domega =
getFTensor2FromMat<3, 3>(
dataAtPts->leviKirchoffdOmegaAtPts);
int row_nb_base_functions = row_data.
getN().size2();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
auto t_m = get_ftensor2(
K, 3 * rr, 0);
const double b =
a * t_row_base_fun;
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(
k,
l) += (b * t_col_base_fun) * t_levi_kirchoff_domega(
k,
l);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr) {
++t_row_base_fun;
}
++t_w;
++t_levi_kirchoff_domega;
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r + 0,
c + 0), &
m(r + 0,
c + 1), &
m(r + 0,
c + 2),
&
m(r + 1,
c + 0), &
m(r + 1,
c + 1), &
m(r + 1,
c + 2),
&
m(r + 2,
c + 0), &
m(r + 2,
c + 1), &
m(r + 2,
c + 2)
);
};
auto t_w = getFTensor0IntegrationWeight();
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(
dataAtPts->hdOmegaAtPts);
int row_nb_base_functions = row_data.
getN().size2() / 3;
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs / 3; ++rr) {
t_PRT(
i,
k) = t_row_base_fun(
j) * t_h_domega(
i,
j,
k);
auto t_m = get_ftensor2(
K, 3 * rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(
i,
j) += (
a * t_col_base_fun) * t_PRT(
i,
j);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_h_domega;
}
}
int nb_integration_pts = row_data.
getN().size1();
&
m(r,
c + 0), &
m(r,
c + 1), &
m(r,
c + 2));
};
auto t_w = getFTensor0IntegrationWeight();
auto t_h_domega = getFTensor3FromMat<3, 3, 3>(
dataAtPts->hdOmegaAtPts);
int row_nb_base_functions = row_data.
getN().size2() / 9;
const double ts_a = getTSa();
for (int gg = 0; gg != nb_integration_pts; ++gg) {
int rr = 0;
for (; rr != row_nb_dofs; ++rr) {
t_PRT(
k) = t_row_base_fun(
i,
j) * t_h_domega(
i,
j,
k);
auto t_m = get_ftensor2(
K, rr, 0);
for (int cc = 0; cc != col_nb_dofs / 3; ++cc) {
t_m(
j) += (
a * t_col_base_fun) * t_PRT(
j);
++t_m;
++t_col_base_fun;
}
++t_row_base_fun;
}
for (; rr != row_nb_base_functions; ++rr)
++t_row_base_fun;
++t_w;
++t_h_domega;
}
}
auto create_tag = [this](const std::string tag_name, const int size) {
double def_VAL[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
Tag th;
th, MB_TAG_CREAT | MB_TAG_SPARSE,
def_VAL);
return th;
};
Tag th_w = create_tag("SpatialDisplacement", 3);
Tag th_omega = create_tag("Omega", 3);
Tag th_approxP = create_tag("Piola1Stress", 9);
Tag th_sigma = create_tag("CauchyStress", 9);
Tag th_log_u = create_tag("LogSpatialStretch", 9);
Tag th_u = create_tag("SpatialStretch", 9);
Tag th_h = create_tag("h", 9);
Tag th_X = create_tag("X", 3);
Tag th_detF = create_tag("detF", 1);
Tag th_angular_momentum = create_tag("AngularMomentum", 3);
Tag th_u_eig_vec = create_tag("SpatialStretchEigenVec", 9);
Tag th_u_eig_vals = create_tag("SpatialStretchEigenVals", 3);
Tag th_traction = create_tag("traction", 3);
Tag th_disp = create_tag("U", 3);
Tag th_disp_error = create_tag("U_ERROR", 1);
auto t_w = getFTensor1FromMat<3>(
dataAtPts->wL2AtPts);
auto t_omega = getFTensor1FromMat<3>(
dataAtPts->rotAxisAtPts);
auto t_h = getFTensor2FromMat<3, 3>(
dataAtPts->hAtPts);
auto t_log_u =
getFTensor2SymmetricFromMat<3>(
dataAtPts->logStretchTensorAtPts);
auto t_u = getFTensor2SymmetricFromMat<3>(
dataAtPts->StretchTensorAtPts);
auto t_R = getFTensor2FromMat<3, 3>(
dataAtPts->rotMatAtPts);
auto t_approx_P = getFTensor2FromMat<3, 3>(
dataAtPts->approxPAtPts);
auto t_levi_kirchoff = getFTensor1FromMat<3>(
dataAtPts->leviKirchoffAtPts);
auto t_coords = getFTensor1CoordsAtGaussPts();
auto t_normal = getFTensor1NormalsAtGaussPts();
auto t_disp = getFTensor1FromMat<3>(
dataAtPts->wH1AtPts);
auto set_float_precision = [](const double x) {
if (std::abs(x) < std::numeric_limits<float>::epsilon())
return 0.;
else
return x;
};
auto save_scal_tag = [&](
auto &th,
auto v,
const int gg) {
v = set_float_precision(
v);
};
auto save_vec_tag = [&](auto &th, auto &t_d, const int gg) {
a = set_float_precision(
a);
};
&
m(0, 0), &
m(0, 1), &
m(0, 2),
&
m(1, 0), &
m(1, 1), &
m(1, 2),
&
m(2, 0), &
m(2, 1), &
m(2, 2));
auto save_mat_tag = [&](auto &th, auto &t_d, const int gg) {
v = set_float_precision(
v);
};
const auto nb_gauss_pts = getGaussPts().size2();
for (auto gg = 0; gg != nb_gauss_pts; ++gg) {
t_traction(
i) = t_approx_P(
i,
j) * t_normal(
j) / t_normal.
l2();
CHKERR save_vec_tag(th_w, t_w, gg);
CHKERR save_vec_tag(th_X, t_coords, gg);
CHKERR save_vec_tag(th_omega, t_omega, gg);
CHKERR save_vec_tag(th_traction, t_traction, gg);
CHKERR save_mat_tag(th_h, t_h, gg);
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_log_u_tmp(ii, jj) = t_log_u(ii, jj);
CHKERR save_mat_tag(th_log_u, t_log_u_tmp, gg);
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_u_tmp(ii, jj) = t_u(ii, jj);
CHKERR save_mat_tag(th_u, t_u_tmp, gg);
CHKERR save_mat_tag(th_approxP, t_approx_P, gg);
CHKERR save_vec_tag(th_disp, t_disp, gg);
double u_error = sqrt((t_disp(
i) - t_w(
i)) * (t_disp(
i) - t_w(
i)));
CHKERR save_scal_tag(th_disp_error, u_error, gg);
const double jac = determinantTensor3by3(t_h);
t_cauchy(
i,
j) = (1. / jac) * (t_approx_P(
i,
k) * t_h(
j,
k));
CHKERR save_mat_tag(th_sigma, t_cauchy, gg);
t_levi(
k) = t_levi_kirchoff(
k);
&t_levi(0));
auto get_eiegn_vector_symmetric = [&](auto &t_u) {
for (int ii = 0; ii != 3; ++ii)
for (int jj = 0; jj != 3; ++jj)
t_m(ii, jj) = t_u(ii, jj);
auto t_eigen_values = getFTensor1FromArray<3>(eigen_values);
CHKERR computeEigenValuesSymmetric(t_m, t_eigen_values);
&*eigen_values.data().begin());
};
CHKERR get_eiegn_vector_symmetric(t_u);
++t_w;
++t_h;
++t_log_u;
++t_u;
++t_omega;
++t_R;
++t_approx_P;
++t_levi_kirchoff;
++t_coords;
++t_normal;
++t_disp;
}
}
if (type == MBTET) {
int nb_integration_pts = data.
getN().size1();
auto t_w = getFTensor0IntegrationWeight();
auto t_P = getFTensor2FromMat<3, 3>(
dataAtPts->approxPAtPts);
auto t_h = getFTensor2FromMat<3, 3>(
dataAtPts->hAtPts);
for (int gg = 0; gg != nb_integration_pts; ++gg) {
const double a = t_w *
v;
(*energy) +=
a * t_P(
i,
J) * t_h(
i,
J);
++t_w;
++t_P;
++t_h;
}
}
}
}
Eshelbian plasticity interface.
Kronecker Delta class symmetric.
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_OPERATION_UNSUCCESSFUL
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
FTensor::Index< 'n', SPACE_DIM > n
FTensor::Index< 'm', SPACE_DIM > m
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
const double v
phase velocity of light in medium (cm/ns)
static __CLPK_integer lapack_dposv(char uplo, __CLPK_integer n, __CLPK_integer nrhs, __CLPK_doublereal *a, __CLPK_integer lda, __CLPK_doublereal *b, __CLPK_integer ldb)
FTensor::Index< 'l', 3 > l
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
FTensor::Ddg< double, 3, 3 > getDiffMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f, Fun< double > d_f, const int nb)
Get the Diff Mat object.
FTensor::Tensor2_symmetric< double, 3 > getMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f)
Get the Mat object.
FTensor::Ddg< double, 3, 3 > getDiffDiffMat(Val< double, 3 > &t_val, Vec< double, 3 > &t_vec, Fun< double > f, Fun< double > d_f, Fun< double > dd_f, FTensor::Tensor2< double, 3, 3 > &t_S, const int nb)
auto get_uniq_nb(double *ptr)
auto get_diff_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
static constexpr auto size_symm
auto sort_eigen_vals(FTensor::Tensor1< double, DIM > &eig, FTensor::Tensor2< double, DIM, DIM > &eigen_vec)
auto get_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
auto is_eq(const double &a, const double &b)
auto get_diff2_rotation_form_vector(FTensor::Tensor1< T, 3 > &t_omega, RotSelector rotSelector=LARGE_ROT)
Tensors class implemented by Walter Landry.
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
VectorBoundedArray< double, 3 > VectorDouble3
UBlasMatrix< double > MatrixDouble
implementation of Data Operators for Forces and Sources
constexpr double t
plate stiffness
static boost::function< double(const double)> dd_f
static enum RotSelector gradApperoximator
static enum StretchSelector stretchSelector
static boost::function< double(const double)> d_f
static enum RotSelector rotSelector
static boost::function< double(const double)> f
MoFEMErrorCode preProcess()
boost::shared_ptr< TractionBcVec > bcData
MoFEM::Interface & mField
MatrixDouble K
local tangent matrix
VectorDouble nF
local right hand side vector
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
boost::shared_ptr< BcDispVec > bcDispPtr
MoFEMErrorCode integrate(EntData &data)
moab::Interface & postProcMesh
std::vector< EntityHandle > & mapGaussPts
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
MoFEMErrorCode integrate(EntData &data)
boost::shared_ptr< BcRotVec > bcRotPtr
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrateHencky(EntData &row_data, EntData &col_data)
MoFEMErrorCode integratePiola(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integratePiola(EntData &data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode integrateHencky(EntData &data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &row_data, EntData &col_data)
MoFEMErrorCode integrate(EntData &data)
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
static auto check(const double &a, const double &b)
Set integration rule to boundary elements.
Add operators pushing bases from local to physical configuration.
Data on single entity (This is passed as argument to DataOperator::doWork)
FTensor::Tensor2< FTensor::PackPtr< double *, Tensor_Dim0 *Tensor_Dim1 >, Tensor_Dim0, Tensor_Dim1 > getFTensor2DiffN(FieldApproximationBase base)
Get derivatives of base functions for Hdiv space.
FTensor::Tensor2< FTensor::PackPtr< double *, Tensor_Dim0 *Tensor_Dim1 >, Tensor_Dim0, Tensor_Dim1 > getFTensor2N(FieldApproximationBase base)
Get base functions for Hdiv/Hcurl spaces.
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorDouble & getFieldData() const
get dofs values
FTensor::Tensor1< FTensor::PackPtr< double *, Tensor_Dim >, Tensor_Dim > getFTensor1N(FieldApproximationBase base)
Get base functions for Hdiv/Hcurl spaces.
const VectorDofs & getFieldDofs() const
get dofs data stature FEDofEntity
const VectorInt & getIndices() const
Get global indices of dofs on entity.