12 meshPositionsFieldName(
"MESH_NODE_POSITIONS") {}
29 auto get_ftensor_n_diff = [&]() {
37 &
m(0, 0), &
m(0, 1), &
m(0, 2));
42 const size_t nb_gauss_pts =
gaussPts.size2();
58 for (
int gg = 0; gg != nb_gauss_pts; ++gg) {
67 }
else if (type == MBQUAD) {
75 const size_t nb_gauss_pts =
gaussPts.size2();
90 auto t_diff = get_ftensor_n_diff();
91 for (
int gg = 0; gg != nb_gauss_pts; ++gg) {
92 auto t_coords = get_ftensor_from_vec_3d(
coords);
94 t_t1(
i) += t_coords(
i) * t_diff(
N0);
95 t_t2(
i) += t_coords(
i) * t_diff(
N1);
107 "Element type not implemented");
124 auto calc_normal = [&](
const double *diff_ptr) {
135 diff_ptr, &diff_ptr[1]);
146 for (
int nn = 0; nn !=
num_nodes; ++nn) {
147 t_t1(
i) += t_coords(
i) * t_diff(
N0);
148 t_t2(
i) += t_coords(
i) * t_diff(
N1);
153 aRea = sqrt(t_normal(
i) * t_normal(
i));
157 const double *diff_ptr;
161 CHKERR calc_normal(diff_ptr);
167 CHKERR calc_normal(diff_ptr);
171 "Element type not implemented");
183 int rule =
getRule(order_row, order_col, order_data);
185 auto set_integration_pts_for_tri = [&]() {
196 gaussPts.resize(3, nb_gauss_pts,
false);
197 cblas_dcopy(nb_gauss_pts, &
QUAD_2D_TABLE[rule]->points[1], 3,
199 cblas_dcopy(nb_gauss_pts, &
QUAD_2D_TABLE[rule]->points[2], 3,
207 cblas_dcopy(3 * nb_gauss_pts,
QUAD_2D_TABLE[rule]->points, 1, shape_ptr,
220 auto calc_base_for_tri = [&]() {
222 const size_t nb_gauss_pts =
gaussPts.size2();
225 base.resize(nb_gauss_pts, 3,
false);
226 diff_base.resize(3, 2,
false);
235 auto calc_base_for_quad = [&]() {
237 const size_t nb_gauss_pts =
gaussPts.size2();
240 base.resize(nb_gauss_pts, 4,
false);
241 diff_base.resize(nb_gauss_pts, 8,
false);
242 for (
int gg = 0; gg != nb_gauss_pts; ++gg) {
266 CHKERR set_integration_pts_for_tri();
271 CHKERR calc_base_for_quad();
275 "Element type not implemented: %d", type);
281 const size_t nb_gauss_pts =
gaussPts.size2();
285 CHKERR calc_base_for_tri();
288 CHKERR calc_base_for_quad();
292 "Element type not implemented: %d", type);
368 const size_t nb_nodes =
370 double *shape_functions =
372 const size_t nb_gauss_pts =
gaussPts.size2();
374 for (
int gg = 0; gg != nb_gauss_pts; ++gg)
375 for (
int dd = 0; dd != 3; ++dd)
377 nb_nodes, &shape_functions[nb_nodes * gg], 1, &
coords[dd], 3);
387 "User operator and finite element do not work together");
432FaceElementForcesAndSourcesCore::UserDataOperator::loopSideVolumes(
434 return loopSide(fe_name, &fe_method, 3);
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
@ L2
field with C-1 continuity
@ HCURL
field with continuous tangents
@ HDIV
field with continuous normal traction
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_DATA_INCONSISTENCY
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
FTensor::Index< 'm', SPACE_DIM > m
FTensor::Index< 'i', SPACE_DIM > i
const double v
phase velocity of light in medium (cm/ns)
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
constexpr std::enable_if<(Dim0<=2 &&Dim1<=2), Tensor2_Expr< Levi_Civita< T >, T, Dim0, Dim1, i, j > >::type levi_civita(const Index< i, Dim0 > &, const Index< j, Dim1 > &)
levi_civita functions to make for easy adhoc use
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
implementation of Data Operators for Forces and Sources
#define QUAD_2D_TABLE_SIZE
static QUAD *const QUAD_2D_TABLE[]
virtual moab::Interface & get_moab()=0
Deprecated interface functions.
std::array< std::bitset< LASTSPACE >, MBMAXTYPE > spacesOnEntities
spaces on entity types
std::array< boost::ptr_vector< EntData >, MBMAXTYPE > dataOnEntities
boost::shared_ptr< const NumeredEntFiniteElement > numeredEntFiniteElementPtr
MatrixDouble tangentOneAtGaussPts
virtual MoFEMErrorCode calculateAreaAndNormal()
Calculate element area and normal of the face.
MoFEMErrorCode operator()()
function is run for every finite element
FaceElementForcesAndSourcesCore(Interface &m_field)
MatrixDouble normalsAtGaussPts
virtual MoFEMErrorCode getSpaceBaseAndOrderOnElement()
Determine approximation space and order of base functions.
virtual MoFEMErrorCode calculateAreaAndNormalAtIntegrationPts()
Calculate element area and normal of the face at integration points.
virtual MoFEMErrorCode setIntegrationPts()
Set integration points.
const EntityHandle * conn
virtual MoFEMErrorCode calculateCoordinatesAtGaussPts()
Calculate coordinate at integration points.
MatrixDouble tangentTwoAtGaussPts
ForcesAndSourcesCore * ptrFE
structure to get information form mofem into EntitiesFieldData
MoFEMErrorCode loopOverOperators()
Iterate user data operators.
int getMaxRowOrder() const
Get max order of approximation for field in rows.
EntitiesFieldData & dataHdiv
MoFEMErrorCode getSpacesAndBaseOnEntities(EntitiesFieldData &data) const
Get field approximation space and base on entities.
virtual MoFEMErrorCode setGaussPts(int order_row, int order_col, int order_data)
set user specific integration rule
EntitiesFieldData & dataHcurl
auto & getElementPolynomialBase()
Get the Entity Polynomial Base object.
EntitiesFieldData & dataH1
MatrixDouble coordsAtGaussPts
coordinated at gauss points
virtual int getRule(int order_row, int order_col, int order_data)
another variant of getRule
MoFEMErrorCode calHierarchicalBaseFunctionsOnElement()
Calculate base functions.
MatrixDouble gaussPts
Matrix of integration points.
MoFEMErrorCode calBernsteinBezierBaseFunctionsOnElement()
Calculate Bernstein-Bezier base.
int getMaxColOrder() const
Get max order of approximation for field in columns.
EntityType lastEvaluatedElementEntityType
Last evaluated type of element entity.
int getMaxDataOrder() const
Get max order of approximation for data fields.
MoFEMErrorCode createDataOnElement(EntityType type)
Create a entity data on element object.
EntitiesFieldData & dataL2
Calculate base functions on triangle.
Calculate base functions on triangle.
Base volume element used to integrate on skeleton.