v0.14.0
Loading...
Searching...
No Matches
FatPrismPolynomialBase.cpp
Go to the documentation of this file.
1/** \file FatPrismPolynomialBase.cpp
2\brief Implementation of Ainsworth-Cole H1 base on edge
3
4\todo Prism element can be integrated exploiting tonsorial product. Current
5implementation do not take that opportunity. That can be viewed as a bug.
6
7*/
8
9
10
11using namespace MoFEM;
12
14 boost::typeindex::type_index type_index, UnknownInterface **iface) const {
15 *iface = const_cast<FatPrismPolynomialBaseCtx *>(this);
16 return 0;
17}
18
21 EntitiesFieldData &data_triangles_only,
22 EntitiesFieldData &data_trough_thickness,
23 MatrixDouble &gauss_pts_triangles_only,
24 MatrixDouble &gauss_pts_through_thickness, moab::Interface &moab,
25 const NumeredEntFiniteElement *fe_ptr, const FieldSpace space,
26 const FieldApproximationBase base,
27 const FieldApproximationBase copy_node_base)
28 : EntPolynomialBaseCtx(data, space, base, copy_node_base),
29 dataTrianglesOnly(data_triangles_only),
30 dataTroughThickness(data_trough_thickness),
31 gaussPtsTrianglesOnly(gauss_pts_triangles_only),
32 gaussPtsThroughThickness(gauss_pts_through_thickness), mOab(moab),
33 fePtr(fe_ptr) {
34
35 ierr = setBase();
36 CHKERRABORT(PETSC_COMM_WORLD, ierr);
37}
39
41FatPrismPolynomialBase::query_interface(boost::typeindex::type_index type_index,
42 UnknownInterface **iface) const {
43 *iface = const_cast<FatPrismPolynomialBase *>(this);
44 return 0;
45}
46
49
52 boost::shared_ptr<BaseFunctionCtx> ctx_ptr) {
53
55
57
58 if (!cTx->fePtr)
59 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
60 "Pointer to element should be given "
61 "when EntPolynomialBaseCtx is constructed "
62 "(use different constructor)");
63
64 int nb_gauss_pts = pts.size2();
65 if (!nb_gauss_pts)
67
68 if (pts.size1() < 3)
69 SETERRQ(
70 PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
71 "Wrong dimension of pts, should be at least 3 rows with coordinates");
72
73 const FieldApproximationBase base = cTx->bAse;
74 EntitiesFieldData &data = cTx->dAta;
75
77 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED,
78 "It is assumed that base for vertices is calculated");
79 else
80 data.dataOnEntities[MBVERTEX][0].getNSharedPtr(base) =
81 data.dataOnEntities[MBVERTEX][0].getNSharedPtr(cTx->copyNodeBase);
82
83 data.dataOnEntities[MBVERTEX][0].getN(base).resize(nb_gauss_pts, 6, false);
84 data.dataOnEntities[MBVERTEX][0].getDiffN(base).resize(nb_gauss_pts, 12,
85 false);
86 if (data.dataOnEntities[MBVERTEX][0].getN(base).size1() !=
87 (unsigned int)nb_gauss_pts)
88 SETERRQ1(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
89 "Base functions or nodes has wrong number of integration points "
90 "for base %s",
92
93 if (cTx->gaussPtsTrianglesOnly.size2() *
95 pts.size2())
96 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY, "data inconsistency");
97
98 switch (cTx->sPace) {
99 case H1:
102 CHKERR getValueH1(pts);
103 break;
104 case HDIV:
105 CHKERR getValueHdiv(pts);
106 break;
107 case HCURL:
109 break;
110 case L2:
111 CHKERR getValueL2(pts);
112 break;
113 default:
114 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED, "Not yet implemented");
115 }
116
118}
119
122 const FieldApproximationBase base = cTx->bAse;
125 boost::shared_ptr<BaseFunctionCtx>(new FlatPrismPolynomialBaseCtx(
126 cTx->dataTrianglesOnly, cTx->mOab, cTx->fePtr, H1, base, NOBASE)));
128}
129
132
133 // EntitiesFieldData& data = cTx->dAta;
134 const FieldApproximationBase base = cTx->bAse;
135 PetscErrorCode (*base_polynomials)(int p, double s, double *diff_s, double *L,
136 double *diffL, const int dim) =
138
139 int nb_gauss_pts_through_thickness = cTx->gaussPtsThroughThickness.size2();
140 // Calculate Legendre approx. on edges
141 for (unsigned int ee = 3; ee <= 5; ee++) {
142 auto &ent_data = cTx->dataTroughThickness.dataOnEntities[MBEDGE][ee];
143 int sense = ent_data.getSense();
144 int order = ent_data.getOrder();
145 int nb_dofs = NBEDGE_H1(order);
146 ent_data.getN(base).resize(nb_gauss_pts_through_thickness, nb_dofs, false);
147 ent_data.getDiffN(base).resize(nb_gauss_pts_through_thickness, nb_dofs,
148 false);
149
150 if (nb_dofs > 0) {
151 double diff_s = 1.; // s = s(xi), ds/dxi = 2., because change of basis
152 for (int gg = 0; gg < nb_gauss_pts_through_thickness; gg++) {
153 double s =
154 2 * cTx->gaussPtsThroughThickness(0, gg) - 1; // makes form -1..1
155 if (sense == -1) {
156 s *= -2;
157 diff_s *= -2;
158 }
159 // calculate Legendre polynomials at integration points on edges
160 // thorough thickness
161 CHKERR base_polynomials(order - 2, s, &diff_s,
162 &ent_data.getN(base)(gg, 0),
163 &ent_data.getDiffN(base)(gg, 0), 1);
164 }
165 }
166 }
167
169}
170
173
174 EntitiesFieldData &data = cTx->dAta;
175 const FieldApproximationBase base = cTx->bAse;
176
177 PetscErrorCode (*base_polynomials)(int p, double s, double *diff_s, double *L,
178 double *diffL, const int dim) =
180
181 int nb_gauss_pts = pts.size2();
182 int nb_gauss_pts_on_faces = cTx->gaussPtsTrianglesOnly.size2();
183 int nb_gauss_pts_through_thickness = cTx->gaussPtsThroughThickness.size2();
184
185 // nodes
186 // linear for xi, eta and zeta
187 auto &vert_dat = data.dataOnEntities[MBVERTEX][0];
188 vert_dat.getN(base).resize(nb_gauss_pts, 6, false);
189 vert_dat.getDiffN(base).resize(nb_gauss_pts, 18);
190 noalias(vert_dat.getN(base)) = data.dataOnEntities[MBVERTEX][0].getN(NOBASE);
191 noalias(vert_dat.getDiffN(base)) =
192 data.dataOnEntities[MBVERTEX][0].getDiffN(NOBASE);
193
194 auto &vert_n = vert_dat.getN(base);
195 auto &vert_diff_n = vert_dat.getDiffN(base);
196
197 constexpr int prism_edge_map[9][2] = {{0, 1}, {1, 2}, {2, 0}, {0, 3}, {1, 4},
198 {2, 5}, {3, 4}, {4, 5}, {5, 3}};
199
200 auto edge_through_thickness = [&](const int ee) {
202 // through thickness ho approximation
203 // linear xi,eta, ho terms for zeta
204
205 auto &thickness_ent = cTx->dataTroughThickness.dataOnEntities[MBEDGE][ee];
206 auto &prism_ent = data.dataOnEntities[MBEDGE][ee];
207
208 int order = thickness_ent.getOrder();
209 int nb_dofs = NBEDGE_H1(order);
210 if ((unsigned int)nb_dofs != thickness_ent.getN(base).size2())
211 SETERRQ2(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
212 "nb_dofs != nb_dofs %d != %d", nb_dofs,
213 thickness_ent.getN(base).size2());
214 prism_ent.getN(base).resize(nb_gauss_pts, nb_dofs, false);
215 prism_ent.getDiffN(base).resize(nb_gauss_pts, 3 * nb_dofs, false);
216 if (nb_dofs == 0)
218
219
220 int gg = 0;
221 for (int ggf = 0; ggf < nb_gauss_pts_on_faces; ggf++) {
222
223 for (int ggt = 0; ggt < nb_gauss_pts_through_thickness; ggt++, gg++) {
224 double extrude = vert_n(gg, prism_edge_map[ee][0]) +
225 vert_n(gg, prism_edge_map[ee][1]);
226
227 double diff_extrude[3];
228 for (auto d : {0, 1, 2})
229 diff_extrude[d] = vert_diff_n(gg, 3 * prism_edge_map[ee][0] + d) +
230 vert_diff_n(gg, 3 * prism_edge_map[ee][1] + d);
231
232 double n0 = vert_n(gg, 0) + vert_n(gg, 1) + vert_n(gg, 2);
233 double n1 = vert_n(gg, 3) + vert_n(gg, 4) + vert_n(gg, 5);
234
235 // Calculate base through thickness directly from shape fuctions. I
236 // leave that bit of the code, could be useful for integration on the
237 // skeleton.
238
239 // double l[order + 1], diff_l[3 * (order + 1)];
240 // double ksi = n1 - n0;
241 // double diff_ksi[3];
242 // for (auto d : {0, 1, 2})
243 // diff_ksi[d] =
244 // vert_diff_n(gg, 3 * 3 + d) + vert_diff_n(gg, 3 * 4 + d) +
245 // vert_diff_n(gg, 3 * 5 + d) - vert_diff_n(gg, 3 * 0 + d) -
246 // vert_diff_n(gg, 3 * 1 + d) - vert_diff_n(gg, 3 * 2 + d);
247 // if(sense == -1) {
248 // ksi *= -1;
249 // for (auto d : {0, 1, 2})
250 // diff_ksi[d] *= -1;
251 // }
252 // CHKERR base_polynomials(order - 2, ksi, diff_ksi, l, diff_l, 3);
253
254 double *l = &(thickness_ent.getN(base)(ggt, 0));
255 double *diff_l_1d = &(thickness_ent.getDiffN(base)(ggt, 0));
256
257 double bubble = n0 * n1;
258 double diff_bubble[3];
259 for (auto d : {0, 1, 2})
260 diff_bubble[d] =
261 n0 * (vert_diff_n(gg, 3 * 3 + d) + vert_diff_n(gg, 3 * 4 + d) +
262 vert_diff_n(gg, 3 * 5 + d)) +
263
264 n1 * (vert_diff_n(gg, 3 * 0 + d) + vert_diff_n(gg, 3 * 1 + d) +
265 vert_diff_n(gg, 3 * 2 + d));
266
267 for (int dd = 0; dd != nb_dofs; dd++) {
268
269 prism_ent.getN(base)(gg, dd) = extrude * bubble * l[dd];
270 for (auto d : {0, 1, 2})
271 prism_ent.getDiffN(base)(gg, 3 * dd + d) =
272 diff_extrude[d] * bubble * l[dd] +
273 extrude * diff_bubble[d] * l[dd];
274
275 prism_ent.getDiffN(base)(gg, 3 * dd + 2) +=
276 extrude * bubble * 2 * diff_l_1d[dd];
277
278 }
279 }
280 }
282 };
283
284 auto edge_on_the_triangle = [&](const int ee) {
286 // on triangles ho approximation
287 // ho terms on edges, linear zeta
288 int nb_dofs =
289 cTx->dataTrianglesOnly.dataOnEntities[MBEDGE][ee].getN(base).size2();
290 data.dataOnEntities[MBEDGE][ee].getN(base).resize(nb_gauss_pts, nb_dofs,
291 false);
292 data.dataOnEntities[MBEDGE][ee].getDiffN(base).resize(nb_gauss_pts,
293 3 * nb_dofs, false);
294 for (int dd = 0; dd < nb_dofs; dd++) {
295 int gg = 0;
296 for (int ggf = 0; ggf < nb_gauss_pts_on_faces; ggf++) {
297 double tri_n = cTx->dataTrianglesOnly.dataOnEntities[MBEDGE][ee].getN(
298 base)(ggf, dd);
299 double dksi_tri_n =
300 cTx->dataTrianglesOnly.dataOnEntities[MBEDGE][ee].getDiffN(base)(
301 ggf, 2 * dd + 0);
302 double deta_tri_n =
303 cTx->dataTrianglesOnly.dataOnEntities[MBEDGE][ee].getDiffN(base)(
304 ggf, 2 * dd + 1);
305 for (int ggt = 0; ggt < nb_gauss_pts_through_thickness; ggt++, gg++) {
306 double zeta = cTx->gaussPtsThroughThickness(0, ggt);
307 double dzeta, edge_shape;
308 if (ee < 3) {
309 dzeta = diffN_MBEDGE0;
310 edge_shape = N_MBEDGE0(zeta);
311 } else {
312 dzeta = diffN_MBEDGE1;
313 edge_shape = N_MBEDGE1(zeta);
314 }
315 data.dataOnEntities[MBEDGE][ee].getN(base)(gg, dd) =
316 tri_n * edge_shape;
317 data.dataOnEntities[MBEDGE][ee].getDiffN(base)(gg, 3 * dd + 0) =
318 dksi_tri_n * edge_shape;
319 data.dataOnEntities[MBEDGE][ee].getDiffN(base)(gg, 3 * dd + 1) =
320 deta_tri_n * edge_shape;
321 data.dataOnEntities[MBEDGE][ee].getDiffN(base)(gg, 3 * dd + 2) =
322 tri_n * dzeta;
323 }
324 }
325 }
327 };
328
329 auto trinagle_through_thickness = [&](const int ff) {
331 int nb_dofs;
332 nb_dofs =
333 cTx->dataTrianglesOnly.dataOnEntities[MBTRI][ff].getN(base).size2();
334 data.dataOnEntities[MBTRI][ff].getN(base).resize(nb_gauss_pts, nb_dofs,
335 false);
336 data.dataOnEntities[MBTRI][ff].getDiffN(base).resize(nb_gauss_pts,
337 3 * nb_dofs, false);
338 for (int dd = 0; dd < nb_dofs; dd++) {
339 int gg = 0;
340 for (int ggf = 0; ggf < nb_gauss_pts_on_faces; ggf++) {
341 double tri_n = cTx->dataTrianglesOnly.dataOnEntities[MBTRI][ff].getN(
342 base)(ggf, dd);
343 double dksi_tri_n[2];
344 for (int kk = 0; kk < 2; kk++) {
345 dksi_tri_n[kk] =
346 cTx->dataTrianglesOnly.dataOnEntities[MBTRI][ff].getDiffN(base)(
347 ggf, 2 * dd + kk);
348 }
349 for (int ggt = 0; ggt < nb_gauss_pts_through_thickness; ggt++, gg++) {
350 double zeta = cTx->gaussPtsThroughThickness(0, ggt);
351 double dzeta, edge_shape;
352 if (ff == 3) {
353 dzeta = diffN_MBEDGE0;
354 edge_shape = N_MBEDGE0(zeta);
355 } else {
356 dzeta = diffN_MBEDGE1;
357 edge_shape = N_MBEDGE1(zeta);
358 }
359 data.dataOnEntities[MBTRI][ff].getN(base)(gg, dd) =
360 tri_n * edge_shape;
361 for (auto kk : {0, 1})
362 data.dataOnEntities[MBTRI][ff].getDiffN(base)(gg, 3 * dd + kk) =
363 dksi_tri_n[kk] * edge_shape;
364 data.dataOnEntities[MBTRI][ff].getDiffN(base)(gg, 3 * dd + 2) =
365 tri_n * dzeta;
366 }
367 }
368 }
370 };
371
372 auto quads_base = [&]() {
374 int quads_nodes[3 * 4];
375 int quad_order[3] = {0, 0, 0};
376 double *quad_n[3], *diff_quad_n[3];
377 SideNumber_multiIndex &side_table =
379 SideNumber_multiIndex::nth_index<1>::type::iterator siit;
380 siit = side_table.get<1>().lower_bound(boost::make_tuple(MBQUAD, 0));
381 SideNumber_multiIndex::nth_index<1>::type::iterator hi_siit;
382 hi_siit = side_table.get<1>().upper_bound(boost::make_tuple(MBQUAD, 3));
383 if (std::distance(siit, hi_siit) != 3)
384 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
385 "Expected three quads on prisms");
386 EntityHandle ent = cTx->fePtr->getEnt();
387 int num_nodes;
388 const EntityHandle *conn;
389 CHKERR cTx->mOab.get_connectivity(ent, conn, num_nodes, true);
390 for (; siit != hi_siit; ++siit) {
391 int side = siit->get()->side_number;
392 if(side < 0 && side > 2)
393 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
394 "Side in range 0,1,2 expected");
395 int num_nodes_quad;
396 const EntityHandle *conn_quad;
397 EntityHandle quad = siit->get()->ent;
398 CHKERR cTx->mOab.get_connectivity(quad, conn_quad, num_nodes_quad, true);
399 for (int nn = 0; nn < num_nodes_quad; nn++) {
400 quads_nodes[4 * side + nn] =
401 std::distance(conn, std::find(conn, conn + 6, conn_quad[nn]));
402 }
403 int order = data.dataOnEntities[MBQUAD][side].getOrder();
404 quad_order[side] = order;
405 data.dataOnEntities[MBQUAD][side].getN(base).resize(
406 nb_gauss_pts, NBFACEQUAD_H1(order), false);
407 data.dataOnEntities[MBQUAD][side].getDiffN(base).resize(
408 nb_gauss_pts, 3 * NBFACEQUAD_H1(order), false);
409 if (data.dataOnEntities[MBQUAD][side].getN(base).size2() > 0) {
410 quad_n[side] =
411 &*data.dataOnEntities[MBQUAD][side].getN(base).data().begin();
412 diff_quad_n[side] =
413 &*data.dataOnEntities[MBQUAD][side].getDiffN(base).data().begin();
414 } else {
415 quad_n[side] = NULL;
416 diff_quad_n[side] = NULL;
417 }
418 }
419 if (quad_order[0] > 0 || quad_order[1] > 0 || quad_order[2] > 0) {
420 double *vertex_n =
421 &*data.dataOnEntities[MBVERTEX][0].getN(base).data().begin();
422 double *diff_vertex_n =
423 &*data.dataOnEntities[MBVERTEX][0].getDiffN(base).data().begin();
424 CHKERR H1_QuadShapeFunctions_MBPRISM(quads_nodes, quad_order, vertex_n,
425 diff_vertex_n, quad_n, diff_quad_n,
426 nb_gauss_pts, base_polynomials);
427 }
429 };
430
431 auto prim_base = [&]() {
433 int order = data.dataOnEntities[MBPRISM][0].getOrder();
434 double *vertex_n = &data.dataOnEntities[MBVERTEX][0].getN(base)(0, 0);
435 double *diff_vertex_n =
436 &data.dataOnEntities[MBVERTEX][0].getDiffN(base)(0, 0);
437 data.dataOnEntities[MBPRISM][0].getN(base).resize(
438 nb_gauss_pts, NBVOLUMEPRISM_H1(order), false);
439 data.dataOnEntities[MBPRISM][0].getDiffN(base).resize(
440 nb_gauss_pts, 3 * NBVOLUMEPRISM_H1(order), false);
441 if (NBVOLUMEPRISM_H1(order) > 0) {
443 order, vertex_n, diff_vertex_n,
444 &data.dataOnEntities[MBPRISM][0].getN(base)(0, 0),
445 &data.dataOnEntities[MBPRISM][0].getDiffN(base)(0, 0), nb_gauss_pts,
446 base_polynomials);
447 }
449 };
450
451 // edges on triangles
452 int ee = 0;
453 for (; ee <= 2; ++ee)
454 CHKERR edge_on_the_triangle(ee);
455 for (; ee <= 5; ++ee)
456 CHKERR edge_through_thickness(ee);
457 for (; ee <= 8; ++ee)
458 CHKERR edge_on_the_triangle(ee);
459
460 // triangles
461 // ho on triangles, linear zeta
462 for (int ff = 3; ff <= 4; ++ff)
463 CHKERR trinagle_through_thickness(ff);
464
465 // quads
466 // higher order edges and zeta
467 CHKERR quads_base();
468
469 // prism
470 CHKERR prim_base();
471
473}
474
477 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED, "Not yet implemented");
479}
480
482 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED, "Not yet implemented");
483}
484
486 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED, "Not yet implemented");
487}
static Index< 'p', 3 > p
FieldApproximationBase
approximation base
Definition: definitions.h:58
@ LASTBASE
Definition: definitions.h:69
@ NOBASE
Definition: definitions.h:59
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:447
FieldSpace
approximation spaces
Definition: definitions.h:82
@ L2
field with C-1 continuity
Definition: definitions.h:88
@ H1
continuous field
Definition: definitions.h:85
@ HCURL
field with continuous tangents
Definition: definitions.h:86
@ HDIV
field with continuous normal traction
Definition: definitions.h:87
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:346
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:31
@ MOFEM_NOT_IMPLEMENTED
Definition: definitions.h:32
static const char *const ApproximationBaseNames[]
Definition: definitions.h:72
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:416
#define CHKERR
Inline error check.
Definition: definitions.h:535
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:440
constexpr int order
const int dim
#define diffN_MBEDGE0
derivative of edge shape function
Definition: fem_tools.h:107
#define diffN_MBEDGE1
derivative of edge shape function
Definition: fem_tools.h:108
#define N_MBEDGE0(x)
edge shape function
Definition: fem_tools.h:105
#define N_MBEDGE1(x)
edge shape function
Definition: fem_tools.h:106
multi_index_container< boost::shared_ptr< SideNumber >, indexed_by< ordered_unique< member< SideNumber, EntityHandle, &SideNumber::ent > >, ordered_non_unique< composite_key< SideNumber, const_mem_fun< SideNumber, EntityType, &SideNumber::getEntType >, member< SideNumber, signed char, &SideNumber::side_number > > > > > SideNumber_multiIndex
SideNumber_multiIndex for SideNumber.
#define NBFACEQUAD_H1(P)
Number of base functions on quad for H1 space.
PetscErrorCode H1_QuadShapeFunctions_MBPRISM(int *faces_nodes, int *p, double *N, double *diffN, double *faceN[], double *diff_faceN[], int GDIM, PetscErrorCode(*base_polynomials)(int p, double s, double *diff_s, double *L, double *diffL, const int dim))
Definition: h1.c:642
#define NBVOLUMEPRISM_H1(P)
Number of base functions on prism for H1 space.
#define NBEDGE_H1(P)
Numer of base function on edge for H1 space.
PetscErrorCode H1_VolumeShapeFunctions_MBPRISM(int p, double *N, double *diffN, double *volumeN, double *diff_volumeN, int GDIM, PetscErrorCode(*base_polynomials)(int p, double s, double *diff_s, double *L, double *diffL, const int dim))
Definition: h1.c:790
FTensor::Index< 'l', 3 > l
static MoFEMErrorCodeGeneric< PetscErrorCode > ierr
Definition: Exceptions.hpp:76
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
double zeta
Viscous hardening.
Definition: plastic.cpp:177
Class used to pass element data to calculate base functions on tet,triangle,edge.
const FieldApproximationBase copyNodeBase
PetscErrorCode(* basePolynomialsType0)(int p, double s, double *diff_s, double *L, double *diffL, const int dim)
const FieldApproximationBase bAse
data structure for finite element entity
std::array< boost::ptr_vector< EntData >, MBMAXTYPE > dataOnEntities
Class used to pass element data to calculate base functions on fat prism.
const NumeredEntFiniteElement * fePtr
FatPrismPolynomialBaseCtx(EntitiesFieldData &data, EntitiesFieldData &data_triangles_only, EntitiesFieldData &data_trough_thickness, MatrixDouble &gauss_pts_triangles_only, MatrixDouble &gauss_pts_through_thickness, moab::Interface &moab, const NumeredEntFiniteElement *fe_ptr, const FieldSpace space, const FieldApproximationBase base, const FieldApproximationBase copy_node_base=LASTBASE)
MoFEMErrorCode query_interface(boost::typeindex::type_index type_index, UnknownInterface **iface) const
Calculate base functions on tetrahedralFIXME: Need moab and mofem finite element structure to work (t...
MoFEMErrorCode getValueH1(MatrixDouble &pts)
MoFEMErrorCode getValue(MatrixDouble &pts, boost::shared_ptr< BaseFunctionCtx > ctx_ptr)
MoFEMErrorCode query_interface(boost::typeindex::type_index type_index, UnknownInterface **iface) const
MoFEMErrorCode getValueHcurl(MatrixDouble &pts)
FatPrismPolynomialBaseCtx * cTx
MoFEMErrorCode getValueHdiv(MatrixDouble &pts)
MoFEMErrorCode getValueL2(MatrixDouble &pts)
Class used to pass element data to calculate base functions on flat prism.
Calculate base functions on tetrahedralFIXME: Need moab and mofem finite element structure to work (t...
MoFEMErrorCode getValue(MatrixDouble &pts, boost::shared_ptr< BaseFunctionCtx > ctx_ptr)
Partitioned (Indexed) Finite Element in Problem.
base class for all interface classes
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface refernce to pointer of interface.
SideNumber_multiIndex & getSideNumberTable() const