v0.10.0
Bibliography
[1]

Mark Ainsworth and Joe Coyle. Hierarchic finite element bases on unstructured tetrahedral meshes. International Journal for Numerical Methods in Engineering, 58(14):2103–2130, 2003.

[2]

Mark Ainsworth and Guosheng Fu. Bernstein-bézier bases for tetrahedral finite elements. Computer Methods in Applied Mechanics and Engineering, 2018.

[3]

Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. Bernstein-bézier finite elements of arbitrary order and optimal assembly procedures. SIAM Journal on Scientific Computing, 33(6):3087–3109, 2011.

[4]

Mark Ainsworth. Essential boundary conditions and multi-point constraints in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 190(48):6323–6339, 2001.

[5]

Mark Ainsworth. A posteriori error estimation for lowest order raviart-thomas mixed finite elements. SIAM Journal on Scientific Computing, 30(1):189–204, 2007.

[6]

Douglas N Arnold, Richard S Falk, and Ragnar Winther. Differential complexes and stability of finite element methods i. the de rham complex. In Compatible spatial discretizations, pages 23–46. Springer, 2006.

[7]

Douglas N Arnold, Richard S Falk, and Jay Gopalakrishnan. Mixed finite element approximation of the vector laplacian with dirichlet boundary conditions. Mathematical Models and Methods in Applied Sciences, 22(09):1250024, 2012.

[8]

John W Barrett and Leonid Prigozhin. A mixed formulation of the monge-kantorovich equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41(6):1041–1060, 2007.

[9]

Roshdy S Barsoum. On the use of isoparametric finite elements in linear fracture mechanics. International journal for numerical methods in engineering, 10(1):25–37, 1976.

[10]

Hadrien Bériot, Albert Prinn, and Gwénaël Gabard. Efficient implementation of high-order finite elements for helmholtz problems. International Journal for Numerical Methods in Engineering, 2015.

[11]

Dietrich Braess and Rüdiger Verfürth. A posteriori error estimators for the raviart-thomas element. SIAM Journal on Numerical Analysis, 33(6):2431–2444, 1996.

[12]

F Brezzi, D Boffi, L Demkowicz, RG Durán, RS Falk, and M Fortin. Mixed finite elements, compatibility conditions, and applications. Springer, 2008.

[13]

Carsten Carstensen. A posteriori error estimate for the mixed finite element method. Mathematics of Computation of the American Mathematical Society, 66(218):465–476, 1997.

[14]

Bernardo Cockburn, Jayadeep Gopalakrishnan, and Johnny Guzmán. A new elasticity element made for enforcing weak stress symmetry. Mathematics of Computation, 79(271):1331–1349, 2010.

[15]

B. Cotterell and J.R. Rice. Slightly curved or kinked cracks. International Journal of Fracture, 16(2):155–169, 1980.

[16]

Michael A Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Computer methods in applied mechanics and engineering, 81(2):131–150, 1990.

[17]

Eduardo A de Souza Neto, Djordje Peric, and David Roger Jones Owen. Computational methods for plasticity: theory and applications. John Wiley & Sons, 2011.

[18]

Leszek Demkowicz and Jayadeep Gopalakrishnan. Analysis of the dpg method for the poisson equation. SIAM Journal on Numerical Analysis, 49(5):1788–1809, 2011.

[19]

L. Demkowicz. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1 One and Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science. CRC Press, 2006.

[20]

J Eitelberger, TK Bader, K De Borst, and A Jäger. Multiscale prediction of viscoelastic properties of softwood under constant climatic conditions. Computational Materials Science, 55:303–312, 2012.

[21]

Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of eugenics, 7(4):355–369, 1937.

[22]

Yves Renard Franz Chouly, Patrick Hild. Symmetric and non-symmetric variants of nitsche’s method for contact problems in elasticity: theory and numerical experiments. Technical Report hal- 00776619, HAL archives-ovuertes.fr, 2013.

[23]

Federico Fuentes, Brendan Keith, Leszek Demkowicz, and Sriram Nagaraj. Orientation embedded high order shape functions for the exact sequence elements of all shapes. Computers & Mathematics with Applications, 70(4):353 – 458, 2015.

[24]

Federico Fuentes, Brendan Keith, Leszek Demkowicz, and Sriram Nagaraj. Orientation embedded high order shape functions for the exact sequence elements of all shapes. Computers & Mathematics with applications, 70(4):353–458, 2015.

[25]

R Hauptmann and K Schweizerhof. A systematic development of solid shell element formulations for linear and non linear analyses employing only displacement degrees of freedom. International Journal for Numerical Methods in Engineering, 42(1):49–69, 1998.

[26]

Yuhang Hu and Zhigang Suo. Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida Sinica, 25(5):441–458, 2012.

[27]

John W Hutchinson and Zhigang Suo. Mixed mode cracking in layered materials. Advances in applied mechanics, 29(63):191, 1992.

[28]

Olha Ivanyshyn, Erion Gjonaj, and Thomas Weiland. Computation of singular electromagnetic fields using a hybrid dg-fem method. In Electromagnetic Theory (EMTS), Proceedings of 2013 URSI International Symposium on, pages 745–748. IEEE, 2013.

[29]

Mika Juntunen and Rolf Stenberg. Nitsche’s method for general boundary conditions. Mathematics of computation, 78(267):1353–1374, 2009.

[30]

Łukasz Kaczmarczyk, Chris J. Pearce, and Nenad Bićanić. Scale transition and enforcement of rve boundary conditions in second-order computational homogenization. International Journal for Numerical Methods in Engineering, 74(3):506–522, 2008.

[31]

Lukasz Kaczmarczyk, Mohaddeseh Mousavi Nezhad, and Chris Pearce. Three-dimensional brittle fracture: configurational-force-driven crack propagation. International Journal for Numerical Methods in Engineering, 97(7):531–550, 2014.

[32]

Matthew G Knepley. Programming languages for scientific computing. arXiv preprint arXiv:1209.1711, 2012.

[33]

Walter Landry. Implementing a high performance tensor library. Scientific Programming, 11(4):273–290, 2003.

[34]

Kaczmarczyk Lukasz, Ullah Zahur, Lewandowski Karol, Meng Xuan, Zhou Xiao-Yi, Athanasiadis Ignatios, Nguyen Hoang, Chalons-Mouriesse Christophe-Alexandre, Richardson Euan, Miur Euan, Shvarts Andrei, Wakeni Mebratu, and Pearce Chris. MoFEM: an open source, parallel finite element library. The Journal of Open Source Software, 2020. http://mofem.eng.gla.ac.uk.

[35]

Jerrold E Marsden and Thomas JR Hughes. Mathematical foundations of elasticity. Courier Corporation, 1994.

[36]

Christian Miehe and Matthias Lambrecht. Algorithms for computation of stresses and elasticity moduli in terms of seth–hill's family of generalized strain tensors. Communications in numerical methods in engineering, 17(5):337–353, 2001.

[37]

Florin Radu, Iuliu Sorin Pop, and Peter Knabner. Order of convergence estimates for an euler implicit, mixed finite element discretization of richards' equation. SIAM Journal on Numerical Analysis, 42(4):1452–1478, 2004.

[38]

B Dayanand Reddy. Introductory functional analysis: with applications to boundary value problems and finite elements, volume 27. Springer Science & Business Media, 2013.

[39]

Detlef Ruprecht and Heinrich Müller. A scheme for edge-based adaptive tetrahedron subdivision. Springer, 1998.

[40]

Juan C Simo and Thomas JR Hughes. Computational inelasticity, volume 7. Springer Science & Business Media, 2006.

[41]

Jordi Capdevila Sola. Individual project 4: Linear structural analysis of an arch dam using the finite element method. Technical report, University of Glasgow, 2017. Report.

[42]

Theodore Sussman and Klaus Jurgen Bathe. 3d-shell elements for structures in large strains. Computers and Structures, 122:2 – 12, 2013. Computational Fluid and Solid Mechanics 2013Proceedings Seventh {MIT} Conference on Computational Fluid and Solid Mechanics.

[43]

Timothy J Tautges. Canonical numbering systems for finite-element codes. International Journal for Numerical Methods in Biomedical Engineering, 26(12):1559–1572, 2010.

[44]

M. Fulland V. Lazarus, F.-G. Buchholz and J. Wiebesiek. Comparison of predictions by mode ii or mode iii criteria on crack front twisting in three or four point bending experiments. International Journal of Fracture, 153:141–151, 2008.

[45]

T Vogel, M Th Van Genuchten, and M Cislerova. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24(2):133–144, 2000.

[46]

JS Vrentas, CM Jarzebski, and JL Duda. A deborah number for diffusion in polymer-solvent systems. AIChE Journal, 21(5):894–901, 1975.

[47]

Tobias Waffenschmidt, Andreas Menzel, and Ellen Kuhl. Anisotropic density growth of bone—a computational micro-sphere approach. International Journal of Solids and Structures, 49(14):1928–1946, 2012.

[48]

Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Perumal Nithiarasu, and JZ Zhu. The finite element method, volume 3. McGraw-hill London, 1977.