v0.14.0
Loading...
Searching...
No Matches
Bibliography
[1]

Mark Ainsworth and Joe Coyle. Hierarchic finite element bases on unstructured tetrahedral meshes. International Journal for Numerical Methods in Engineering, 58(14):2103–2130, 2003.

[2]

Mark Ainsworth and Guosheng Fu. Bernstein-bézier bases for tetrahedral finite elements. Computer Methods in Applied Mechanics and Engineering, 2018.

[3]

Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. Bernstein-bézier finite elements of arbitrary order and optimal assembly procedures. SIAM Journal on Scientific Computing, 33(6):3087–3109, 2011.

[4]

Mark Ainsworth. Essential boundary conditions and multi-point constraints in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 190(48):6323–6339, 2001.

[5]

Mark Ainsworth. A posteriori error estimation for lowest order raviart-thomas mixed finite elements. SIAM Journal on Scientific Computing, 30(1):189–204, 2007.

[6]

Douglas N Arnold, Richard S Falk, and Ragnar Winther. Differential complexes and stability of finite element methods i. the de rham complex. In Compatible spatial discretizations, pages 23–46. Springer, 2006.

[7]

Douglas N Arnold, Richard S Falk, and Jay Gopalakrishnan. Mixed finite element approximation of the vector laplacian with dirichlet boundary conditions. Mathematical Models and Methods in Applied Sciences, 22(09):1250024, 2012.

[8]

Ignatios Athanasiadis, Andrei G Shvarts, Zahur Ullah, Karol Lewandowski, Chris J Pearce, and Lukasz Kaczmarczyk. A computational framework for crack propagation along contact interfaces and surfaces under load. Computer Methods in Applied Mechanics and Engineering, 414:116129, 2023.

[9]

Francesca Baldini, Alice Bartolozzi, Martina Ardito, Adriana Voci, Piero Portincasa, Massimo Vassalli, and Laura Vergani. Biomechanics of cultured hepatic cells during different steatogenic hits. Journal of the Mechanical Behavior of Biomedical Materials, 97:296–305, 2019.

[10]

Roshdy S Barsoum. On the use of isoparametric finite elements in linear fracture mechanics. International journal for numerical methods in engineering, 10(1):25–37, 1976.

[11]

William L Barth and Graham F Carey. On a boundary condition for pressure-driven laminar flow of incompressible fluids. International journal for numerical methods in fluids, 54(11):1313–1325, 2007.

[12]

Michel Bellet, H Combeau, Y Fautrelle, D Gobin, M Rady, E Arquis, O Budenkova, B Dussoubs, Y Duterrail, A Kumar, and others. Call for contributions to a numerical benchmark problem for 2d columnar solidification of binary alloys. International Journal of Thermal Sciences, 48(11):2013–2016, 2009.

[13]

Hadrien Bériot, Albert Prinn, and Gwénaël Gabard. Efficient implementation of high-order finite elements for helmholtz problems. International Journal for Numerical Methods in Engineering, 2015.

[14]

Daniele Boffi, Franco Brezzi, Michel Fortin, and others. Mixed finite element methods and applications, volume 44. Springer, 2013.

[15]

Dietrich Braess and Rüdiger Verfürth. A posteriori error estimators for the raviart-thomas element. SIAM Journal on Numerical Analysis, 33(6):2431–2444, 1996.

[16]

F Brezzi, D Boffi, L Demkowicz, RG Durán, RS Falk, and M Fortin. Mixed finite elements, compatibility conditions, and applications. Springer, 2008.

[17]

Carsten Carstensen. A posteriori error estimate for the mixed finite element method. Mathematics of Computation of the American Mathematical Society, 66(218):465–476, 1997.

[18]

Qipeng Chen and Houfa Shen. A finite element method for prediction of macrosegregation with solidification columnar. Journal of International Scientific Publications: Materials, Methods and Technologies (Online), 14:1–8, 2020.

[19]

S. Cochran. 1 - piezoelectricity and basic configurations for piezoelectric ultrasonic transducers. In Ultrasonic Transducers, Woodhead Publishing Series in Electronic and Optical Materials, pages 3–35. Woodhead Publishing, 2012.

[20]

Bernardo Cockburn, Jayadeep Gopalakrishnan, and Johnny Guzmán. A new elasticity element made for enforcing weak stress symmetry. Mathematics of Computation, 79(271):1331–1349, 2010.

[21]

Hervé Combeau, Michel Bellet, Yves Fautrelle, Dominique Gobin, Eric Arquis, Olga Budenkova, Bernard Dussoubs, Yves Du Terrail, Arvind Kumar, Ch-A Gandin, and others. Analysis of a numerical benchmark for columnar solidification of binary alloys. In IOP Conference Series: Materials Science and Engineering, volume 33, page 012086. IOP Publishing, 2012.

[22]

B. Cotterell and J.R. Rice. Slightly curved or kinked cracks. International Journal of Fracture, 16(2):155–169, 1980.

[23]

Michael A Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Computer methods in applied mechanics and engineering, 81(2):131–150, 1990.

[24]

Leszek Demkowicz and Jayadeep Gopalakrishnan. Analysis of the dpg method for the poisson equation. SIAM Journal on Numerical Analysis, 49(5):1788–1809, 2011.

[25]

L. Demkowicz. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1 One and Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science. CRC Press, 2006.

[26]

J Eitelberger, TK Bader, K De Borst, and A Jäger. Multiscale prediction of viscoelastic properties of softwood under constant climatic conditions. Computational Materials Science, 55:303–312, 2012.

[27]

Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of eugenics, 7(4):355–369, 1937.

[28]

Yves Renard Franz Chouly, Patrick Hild. Symmetric and non-symmetric variants of nitsche’s method for contact problems in elasticity: theory and numerical experiments. Technical Report hal- 00776619, HAL archives-ovuertes.fr, 2013.

[29]

Federico Fuentes, Brendan Keith, Leszek Demkowicz, and Sriram Nagaraj. Orientation embedded high order shape functions for the exact sequence elements of all shapes. Computers & Mathematics with Applications, 70(4):353 – 458, 2015.

[30]

Federico Fuentes, Brendan Keith, Leszek Demkowicz, and Sriram Nagaraj. Orientation embedded high order shape functions for the exact sequence elements of all shapes. Computers & Mathematics with applications, 70(4):353–458, 2015.

[31]

R Hauptmann and K Schweizerhof. A systematic development of solid shell element formulations for linear and non linear analyses employing only displacement degrees of freedom. International Journal for Numerical Methods in Engineering, 42(1):49–69, 1998.

[32]

Takashi Hisada, Toyohiro Aoki, Junko Asai, and Yasuharu Yamada. Fem analysis on mechanical stress of 2.5d package interposers. Transactions of The Japan Institute of Electronics Packaging, 5(1):107–114, 2012.

[33]

Yuhang Hu and Zhigang Suo. Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida Sinica, 25(5):441–458, 2012.

[34]

S Hüeber and BI Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer methods in applied mechanics and engineering, 194(27-29):3147–3166, 2005.

[35]

John W Hutchinson and Zhigang Suo. Mixed mode cracking in layered materials. Advances in applied mechanics, 29(63):191, 1992.

[36]

Olha Ivanyshyn, Erion Gjonaj, and Thomas Weiland. Computation of singular electromagnetic fields using a hybrid dg-fem method. In Electromagnetic Theory (EMTS), Proceedings of 2013 URSI International Symposium on, pages 745–748. IEEE, 2013.

[37]

Mika Juntunen and Rolf Stenberg. Nitsche’s method for general boundary conditions. Mathematics of computation, 78(267):1353–1374, 2009.

[38]

Łukasz Kaczmarczyk, Chris J. Pearce, and Nenad Bićanić. Scale transition and enforcement of rve boundary conditions in second-order computational homogenization. International Journal for Numerical Methods in Engineering, 74(3):506–522, 2008.

[39]

Lukasz Kaczmarczyk, Mohaddeseh Mousavi Nezhad, and Chris Pearce. Three-dimensional brittle fracture: configurational-force-driven crack propagation. International Journal for Numerical Methods in Engineering, 97(7):531–550, 2014.

[40]

L. Kaczmarczyk, Z. Ullah, K. Lewandowski, X. Meng, X-Y. Zhou, I. Athanasiadis, H. Nguyen, C-A. Chalons-Mouriesse, E. J. Richardson, E. Miur, A. Shvarts, M. Wakeni, and C. Pearce. Mofem: An open source, parallel finite element library. The Journal of Open Source Software, 5, 2020.

[41]

T. Kirchdoerfer and M. Ortiz. Data-driven computational mechanics. 304:81–101, 2016.

[42]

Matthew G Knepley. Programming languages for scientific computing. arXiv preprint arXiv:1209.1711, 2012.

[43]

Michael Krieg, Gotthold Fläschner, David Alsteens, Benjamin M Gaub, Wouter H Roos, Gijs JL Wuite, Hermann E Gaub, Christoph Gerber, Yves F Dufrêne, and Daniel J Müller. Atomic force microscopy-based mechanobiology. Nature Reviews Physics, 1(1):41–57, 2019.

[44]

Adriana Kuliková, Andrei G Shvarts, Lukasz Kaczmarczyk, and Chris J Pearce. Data-driven finite element method. Proceedings of UKACM 2021 conference, 2021.

[45]

Walter Landry. Implementing a high performance tensor library. Scientific Programming, 11(4):273–290, 2003.

[46]

Karol Lewandowski, Daniele Barbera, Paul Blackwell, Amir H. Roohi, Ignatios Athanasiadis, Andrew McBride, Paul Steinmann, Chris Pearce, and Łukasz Kaczmarczyk. Multifield finite strain plasticity: Theory and numerics. Computer Methods in Applied Mechanics and Engineering, 414:116101, 2023.

[47]

X.-W. Lin, V. Moroz, X. Xu, Y. Gao, D. Rennie, P. Asenov, S. Smidstrup, D. Sherlekar, Z. Qin, T. Fang, J. Lee, M. Choi, and S. Jones. Heterogeneous integration enabled by the state-of-the-art 3dic and cmos technologies: Design, cost, and modeling. pages 3.4.1–3.4.4, 2021.

[48]

David Lockington, Gordon Brown, Chris Pearce, and Lukasz Kaczmarczyk. Evaluating the forces involved in bubble management in dmek surgery–a mathematical and computational model with clinical implications. Journal of Cataract & Refractive Surgery, pages 10–1097, 2022.

[49]

Aleksander Lovric, Wulf G Dettmer, and Djordje Peric. Low order finite element methods for the Navier-Stokes-Cahn-Hilliard equations. November 2019.

[50]

Ines Lüchtefeld, Alice Bartolozzi, Julián Mejía Morales, Oana Dobre, Michele Basso, Tomaso Zambelli, and Massimo Vassalli. Elasticity spectra as a tool to investigate actin cortex mechanics. Journal of nanobiotechnology, 18(1):1–11, 2020.

[51]

Kaczmarczyk Lukasz, Ullah Zahur, Lewandowski Karol, Meng Xuan, Zhou Xiao-Yi, Athanasiadis Ignatios, Nguyen Hoang, Chalons-Mouriesse Christophe-Alexandre, Richardson Euan, Miur Euan, Shvarts Andrei, Wakeni Mebratu, and Pearce Chris. MoFEM: an open source, parallel finite element library. The Journal of Open Source Software, 2020. http://mofem.eng.gla.ac.uk.

[52]

Ashley Lyons, Francesco Tonolini, Alessandro Boccolini, Audrey Repetti, Robert Henderson, Yves Wiaux, and Daniele Faccio. Computational time-of-flight diffuse optical tomography. Nature Photonics, 13(8), 2019.

[53]

Susmriti Das Mahapatra, Preetam Chandan Mohapatra, Adrianus Indrat Aria, Graham Christie, Yogendra Kumar Mishra, Stephan Hofmann, and Vijay Kumar Thakur. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Advanced Science, 8(17):2100864, 2021.

[54]

Christian Miehe and Matthias Lambrecht. Algorithms for computation of stresses and elasticity moduli in terms of seth–hill's family of generalized strain tensors. Communications in numerical methods in engineering, 17(5):337–353, 2001.

[55]

C. Miehe, N. Apel, and M. Lambrecht. Anisotropic additive plasticity in the logarithmic strain space: Modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Computer Methods in Applied Mechanics and Engineering, 191:5383–5425, 2002.

[56]

Christian Miehe, N Apel, and Matthias Lambrecht. Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Computer Methods in Applied Mechanics and Engineering, 191(47-48):5383–5425, 2002.

[57]

A Parvizi, J Müller, SA Funken, and CT Koch. A practical way to resolve ambiguities in wavefront reconstructions by the transport of intensity equation. Ultramicroscopy, 154:1–6, 2015.

[58]

A Popp, MW Gee, and WA Wall. A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79(11):1354–1391, 2009.

[59]

Jack Radford, Ashley Lyons, Francesco Tonolini, and Daniele Faccio. Role of late photons in diffuse optical imaging. Optics Express, 28(20), 2020.

[60]

Jack Radford, Samuel Nerenberg, Andrei Shvarts, Lukasz Kaczmarcyk, and Daniele Faccio. Imaging beyond 100 transport mean free paths using variational autoencoding. In Computational Optical Sensing and Imaging, pages CM3A–5. Optica Publishing Group, 2022.

[61]

Florin Radu, Iuliu Sorin Pop, and Peter Knabner. Order of convergence estimates for an euler implicit, mixed finite element discretization of richards' equation. SIAM Journal on Numerical Analysis, 42(4):1452–1478, 2004.

[62]

B Dayanand Reddy. Introductory functional analysis: with applications to boundary value problems and finite elements, volume 27. Springer Science & Business Media, 2013.

[63]

Sergey I Repin. A posteriori estimates for partial differential equations, volume 4. Walter de Gruyter, 2008.

[64]

Detlef Ruprecht and Heinrich Müller. A scheme for edge-based adaptive tetrahedron subdivision. Springer, 1998.

[65]

RK Scott, LM Harris, and LM Polvani. A test case for the inviscid shallow-water equations on the sphere. Quarterly Journal of the Royal Meteorological Society, 142(694):488–495, 2016.

[66]

Andrei G Shvarts, Yang Xu, Guanbo Min, Ignatios Athanasiadis, Lukasz Kaczmarczyk, Daniel M Mulvihill, and Chris J Pearce. Finite-element modelling of triboelectric nanogenerators accounting for surface roughness. Proceedings of UKACM 2021 conference, 2021.

[67]

Juan C Simo and Thomas JR Hughes. Computational inelasticity, volume 7. Springer Science & Business Media, 2006.

[68]

Jordi Capdevila Sola. Individual project 4: Linear structural analysis of an arch dam using the finite element method. Technical report, University of Glasgow, 2017. Report.

[69]

B Stier, J-W Simon, and S Reese. Comparing experimental results to a numerical meso-scale approach for woven fiber reinforced plastics. Composite structures, 122:553–560, 2015.

[70]

Theodore Sussman and Klaus Jurgen Bathe. 3d-shell elements for structures in large strains. Computers and Structures, 122:2 – 12, 2013. Computational Fluid and Solid Mechanics 2013Proceedings Seventh {MIT} Conference on Computational Fluid and Solid Mechanics.

[71]

Timothy J Tautges. Canonical numbering systems for finite-element codes. International Journal for Numerical Methods in Biomedical Engineering, 26(12):1559–1572, 2010.

[72]

Francesco Tonolini, Jack Radford, Alex Turpin, Daniele Faccio, and Roderick Murray-Smith. Variational inference for computational imaging inverse problems. Journal of Machine Learning Research, 21(179), 2020.

[73]

Zahur Ullah, Lukasz Kaczmarczyk, and Chris J Pearce. Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites. Composite Structures, 161:204–214, 2017.

[74]

M. Fulland V. Lazarus, F.-G. Buchholz and J. Wiebesiek. Comparison of predictions by mode ii or mode iii criteria on crack front twisting in three or four point bending experiments. International Journal of Fracture, 153:141–151, 2008.

[75]

T Vogel, M Th Van Genuchten, and M Cislerova. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24(2):133–144, 2000.

[76]

JS Vrentas, CM Jarzebski, and JL Duda. A deborah number for diffusion in polymer-solvent systems. AIChE Journal, 21(5):894–901, 1975.

[77]

Tobias Waffenschmidt, Andreas Menzel, and Ellen Kuhl. Anisotropic density growth of bone—a computational micro-sphere approach. International Journal of Solids and Structures, 49(14):1928–1946, 2012.

[78]

Mebratu F Wakeni, Ankush Aggarwal, Lukasz Kaczmarczyk, Andrew T McBride, Ignatios Athanasiadis, Chris J Pearce, and Paul Steinmann. A p-adaptive, implicit-explicit mixed finite element method for diffusion-reaction problems. International Journal for Numerical Methods in Engineering, 123(14):3237–3263, 2022.

[79]

Christian Wieners. Taylor-hood elements in 3d. In Analysis and Simulation of Multifield Problems, pages 189–196. Springer, 2003.

[80]

Y. Xu, G. Min, N. Gadegaard, R. Dahiya, and D. M. Mulvihill. A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy, 76, 2020.

[81]

Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Perumal Nithiarasu, and JZ Zhu. The finite element method, volume 3. McGraw-hill London, 1977.