298 {
301 int nb_integration_pts = data.
getN().size1();
302 auto v = getVolume();
303 auto t_w = getFTensor0IntegrationWeight();
304 auto t_approx_P = getFTensor2FromMat<3, 3>(
dataAtPts->approxPAtPts);
305 auto t_R = getFTensor2FromMat<3, 3>(
dataAtPts->rotMatAtPts);
306
307 int nb_base_functions = data.
getN().size2();
314 auto get_ftensor1 = [](
auto &
v) {
317 };
318
319 for (int gg = 0; gg != nb_integration_pts; ++gg) {
321 auto t_nf = get_ftensor1(
nF);
323 t_PRT(
i,
m) = t_approx_P(
i,
j) * t_R(
m,
j);
326 int bb = 0;
327 for (; bb != nb_dofs / 3; ++bb) {
328 t_nf(
k) +=
a * t_row_base_fun * t_leviPRT(
k);
329 ++t_nf;
330 ++t_row_base_fun;
331 }
332 for (; bb != nb_base_functions; ++bb)
333 ++t_row_base_fun;
334 ++t_w;
335 ++t_approx_P;
336 ++t_R;
337 }
339}
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
FTensor::Index< 'm', SPACE_DIM > m
FTensor::Index< 'i', SPACE_DIM > i
const double v
phase velocity of light in medium (cm/ns)
FTensor::Index< 'l', 3 > l
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
constexpr std::enable_if<(Dim0<=2 &&Dim1<=2), Tensor2_Expr< Levi_Civita< T >, T, Dim0, Dim1, i, j > >::type levi_civita(const Index< i, Dim0 > &, const Index< j, Dim1 > &)
levi_civita functions to make for easy adhoc use
VectorDouble nF
local right hand side vector
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorInt & getIndices() const
Get global indices of dofs on entity.