v0.9.1
ExactLaplacianFunction Struct Reference

Laplacian of function. More...

## Public Member Functions

double operator() (const double x, const double y, const double z) const

double operator() (const double x, const double y, const double z) const

double operator() (const double x, const double y, const double z) const

## Detailed Description

Laplacian of function.

This is Laplacian of $$u$$, it is calculated using formula

$\nabla^2 u(x,y,z) = \nabla \cdot \nabla u \frac{\partial^2 u}{\partial x^2}+ \frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}$

Examples
analytical_nonlinear_poisson.cpp, analytical_poisson.cpp, and analytical_poisson_field_split.cpp.

Definition at line 70 of file analytical_nonlinear_poisson.cpp.

## ◆ operator()() [1/3]

 double ExactLaplacianFunction::operator() ( const double x, const double y, const double z ) const
Examples
analytical_nonlinear_poisson.cpp, analytical_poisson.cpp, and analytical_poisson_field_split.cpp.

Definition at line 71 of file analytical_nonlinear_poisson.cpp.

71  {
72  return 0.4e1 + (double)(4 * x) + (double)(4 * y) + 0.4e1 * pow(z, 0.3e1) +
73  0.3e1 *
74  (0.6e1 * z * z + 0.6e1 * (double)x * z * z +
75  0.6e1 * (double)y * z * z + 0.6e1 * pow(z, 0.5e1)) *
76  z * z +
77  0.6e1 *
78  (0.2e1 + (double)(2 * x) + (double)(2 * y) +
79  0.2e1 * pow(z, 0.3e1) + (double)(x * x) + (double)(2 * x * y) +
80  0.2e1 * (double)x * pow(z, 0.3e1) + (double)(y * y) +
81  0.2e1 * (double)y * pow(z, 0.3e1) + pow(z, 0.6e1)) *
82  z;
83  }

## ◆ operator()() [2/3]

 double ExactLaplacianFunction::operator() ( const double x, const double y, const double z ) const

Definition at line 77 of file analytical_poisson.cpp.

77  {
78  return 4 + 6 * z;
79  }

## ◆ operator()() [3/3]

 double ExactLaplacianFunction::operator() ( const double x, const double y, const double z ) const

Definition at line 80 of file analytical_poisson_field_split.cpp.

80  {
81  return 4 + 6 * z;
82  }

The documentation for this struct was generated from the following files: