941 {
943
944 const size_t nb_row_dofs = row_data.
getIndices().size();
945 const size_t nb_col_dofs = col_data.
getIndices().size();
946 if (nb_row_dofs && nb_col_dofs) {
947
948 auto get_dt = [&]() {
950 CHKERR TSGetTimeStep(getFEMethod()->ts, &
dt);
953 };
954 const auto dt = get_dt();
955
956 const size_t nb_integration_pts = row_data.
getN().size1();
957 const size_t nb_row_base_functions = row_data.
getN().size2();
958 auto t_w = getFTensor0IntegrationWeight();
959
960 auto get_row_base = [&]() {
962 double *base_ptr = &*
commonDataPtr->dualBaseMat.data().begin();
964 } else {
966 }
967 };
968 auto t_row_base = get_row_base();
969
973 auto t_flow =
974 getFTensor2SymmetricFromMat<3>(*(
commonDataPtr->plasticFlowPtr));
975
976 auto t_D = getFTensor4DdgFromMat<3, 3, 0>(*
commonDataPtr->mtD);
977 auto t_D_Deviator =
978 getFTensor4DdgFromMat<3, 3, 0>(*
commonDataPtr->mtD_Deviator);
979
983
984 for (size_t gg = 0; gg != nb_integration_pts; ++gg) {
985 double alpha =
dt * getMeasure() * t_w * (*cache).scale_constraint;
986
987 auto mat_ptr = locMat.data().begin();
989 t_D_Deviator,
992
994 &locMat(0, 2), &locMat(0, 3),
995 &locMat(0, 4), &locMat(0, 5));
996
997 size_t rr = 0;
998 for (; rr != nb_row_dofs; ++rr) {
999
1001 for (size_t cc = 0; cc != nb_col_dofs / 6; cc++) {
1002
1003 t_mat(
L) -= (
alpha * t_row_base * t_col_base) *
1004 (t_diff_constrain_dstrain(
i,
j) * t_L(
i,
j,
L));
1005
1006 ++t_mat;
1007 ++t_col_base;
1008 }
1009
1010 ++t_row_base;
1011 }
1012 for (; rr != nb_row_base_functions; ++rr)
1013 ++t_row_base;
1014
1015 ++t_f;
1016 ++t_tau;
1017 ++t_tau_dot;
1018 ++t_flow;
1019 ++t_w;
1020 }
1021 }
1022
1024}
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
FTensor::Index< 'i', SPACE_DIM > i
FTensor::Index< 'j', 3 > j
static auto getFTensor0FromVec(ublas::vector< T, A > &data)
Get tensor rank 0 (scalar) form data vector.
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorInt & getIndices() const
Get global indices of dofs on entity.