v0.14.0
Tensor2_carat_Tensor2.hpp
Go to the documentation of this file.
1 /* Creates a Tensor2_symmetric expression by contracting two Tensor2's
2  together. There are different versions, depending on where the
3  contracting indices are located (i.e. whether it is A(i,j)^B(j,k)
4  or A(i,j)^B(k,j)). The classes are numbered to differentiate
5  between these. Thus, A(i,j)^B(j,k) has 10 appended to the name
6  because I count from 0. */
7 
8 #pragma once
9 
10 namespace FTensor
11 {
12  /* Base Template */
13  template <class A, class B, class T, class U, int Dim0_0, int Dim1_0,
14  int Dim0_1, int Dim1_1, char i0, char j0, char i1, char j1>
16  {};
17 
18  /* A(i,j)^B(j,k) */
19 
20  template <class A, class B, class T, class U, int Dim, int Dim1, char i,
21  char j, char k>
22  class Tensor2_carat_Tensor2<A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k>
23  {
26 
27  template <int Current_Dim>
28  typename promote<T, U>::V
29  eval(const int N1, const int N2, const Number<Current_Dim> &) const
30  {
31  return iterA(N1, Current_Dim - 1) * iterB(Current_Dim - 1, N2)
32  + eval(N1, N2, Number<Current_Dim - 1>());
33  }
34  typename promote<T, U>::V
35  eval(const int N1, const int N2, const Number<1> &) const
36  {
37  return iterA(N1, 0) * iterB(0, N2);
38  }
39 
40  public:
43  : iterA(a), iterB(b)
44  {}
45  typename promote<T, U>::V operator()(const int N1, const int N2) const
46  {
47  return eval(N1, N2, Number<Dim1>());
48  }
49  };
50 
51  /* A(i,j)^B(k,j) */
52 
53  template <class A, class B, class T, class U, int Dim, int Dim1, char i,
54  char j, char k>
55  class Tensor2_carat_Tensor2<A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j>
56  {
59 
60  template <int Current_Dim>
61  typename promote<T, U>::V
62  eval(const int N1, const int N2, const Number<Current_Dim> &) const
63  {
64  return iterA(N1, Current_Dim - 1) * iterB(N2, Current_Dim - 1)
65  + eval(N1, N2, Number<Current_Dim - 1>());
66  }
67  typename promote<T, U>::V
68  eval(const int N1, const int N2, const Number<1> &) const
69  {
70  return iterA(N1, 0) * iterB(N2, 0);
71  }
72 
73  public:
76  : iterA(a), iterB(b)
77  {}
78  typename promote<T, U>::V operator()(const int N1, const int N2) const
79  {
80  return eval(N1, N2, Number<Dim1>());
81  }
82  };
83 
84  /* A(j,i)^B(j,k) */
85 
86  template <class A, class B, class T, class U, int Dim, int Dim1, char i,
87  char j, char k>
88  class Tensor2_carat_Tensor2<A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k>
89  {
92 
93  template <int Current_Dim>
94  typename promote<T, U>::V
95  eval(const int N1, const int N2, const Number<Current_Dim> &) const
96  {
97  return iterA(Current_Dim - 1, N1) * iterB(Current_Dim - 1, N2)
98  + eval(N1, N2, Number<Current_Dim - 1>());
99  }
100  typename promote<T, U>::V
101  eval(const int N1, const int N2, const Number<1> &) const
102  {
103  return iterA(0, N1) * iterB(0, N2);
104  }
105 
106  public:
109  : iterA(a), iterB(b)
110  {}
111  typename promote<T, U>::V operator()(const int N1, const int N2) const
112  {
113  return eval(N1, N2, Number<Dim1>());
114  }
115  };
116 
117  /* A(j,i)^B(k,j) */
118 
119  template <class A, class B, class T, class U, int Dim, int Dim1, char i,
120  char j, char k>
121  class Tensor2_carat_Tensor2<A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j>
122  {
125 
126  template <int Current_Dim>
127  typename promote<T, U>::V
128  eval(const int N1, const int N2, const Number<Current_Dim> &) const
129  {
130  return iterA(Current_Dim - 1, N1) * iterB(N2, Current_Dim - 1)
131  + eval(N1, N2, Number<Current_Dim - 1>());
132  }
133  typename promote<T, U>::V
134  eval(const int N1, const int N2, const Number<1> &) const
135  {
136  return iterA(0, N1) * iterB(N2, 0);
137  }
138 
139  public:
142  : iterA(a), iterB(b)
143  {}
144  typename promote<T, U>::V operator()(const int N1, const int N2) const
145  {
146  return eval(N1, N2, Number<Dim1>());
147  }
148  };
149 
150  template <class A, class B, class T, class U, int Dim0_0, int Dim1_0,
151  int Dim0_1, int Dim1_1, char i0, char j0, char i1, char j1>
154  {
155  using TensorExpr = Tensor2_carat_Tensor2<A, B, T, U, Dim0_0, Dim1_0,
156  Dim0_1, Dim1_1, i0, j0, i1, j1>;
157  static_assert(
158  !std::is_empty<TensorExpr>::value,
159  "Indexes or Dimensions are not compatible with the ^ operator");
160 
161  // Definition of Helper constexpr variables
162  constexpr int Dim = (i0 == i1 || i0 == j1) ? Dim1_0 : Dim0_0;
163  constexpr char i = (i0 == i1 || i0 == j1) ? j0 : i0,
164  j = (i1 == i0 || i1 == j0) ? j1 : i1;
165 
167  i, j>(TensorExpr(a, b));
168  }
169 
170  /* I don't think that this product actually gives a Ddg. */
171 
172  // /* A(i,j)^B(k,l) -> Ddg(i,k,j,l) */
173 
174  // template<class A, class B, class T, class U, int Dim, int Dim1,
175  // char i, char j, char k>
176  // class Tensor2_carat_Tensor2_0213
177  // {
178  // const Tensor2_Expr<A,T,Dim01,Dim23,i,j> iterA;
179  // const Tensor2_Expr<B,U,Dim01,Dim23,k,l> iterB;
180  // public:
181  // Tensor2_carat_Tensor2_0213(const Tensor2_Expr<A,T,Dim01,Dim23,i,j> &a,
182  // const Tensor2_Expr<B,U,Dim01,Dim23,k,l> &b):
183  // iterA(a), iterB(b) {}
184  // typename promote<T,U>::V operator()(const int N1, const int N2, const
185  // int N3,
186  // const int N4) const
187  // {
188  // return iterA(N1,N3)*iterB(N2,N4);
189  // }
190  // };
191 
192  // template<class A, class B, class T, class U, int Dim01, int Dim23,
193  // char i, char j, char k, char l>
194  // const Ddg_Expr<const
195  // Tensor2_carat_Tensor2_0213<A,B,T,U,Dim01,Dim23,i,j,k,l>,typename
196  // promote<T,U>::V,Dim01,Dim23,i,k,j,l> operator^(const
197  // Tensor2_Expr<A,T,Dim01,Dim23,i,j> &a, const
198  // Tensor2_Expr<B,U,Dim01,Dim23,k,l> &b)
199  // {
200  // typedef Tensor2_carat_Tensor2_0213<A,B,T,U,Dim01,Dim23,i,j,k,l>
201  // TensorExpr;
202  // return Ddg_Expr<TensorExpr,typename promote<T,U>::V,Dim01,Dim23,i,k,j,l>
203  // (TensorExpr(a,b));
204  // }
205 }
FTensor::operator^
Ddg_Expr< Ddg_carat_Ddg_13< A, B, T, U, Dim, Dim23, i, j, k, l, m, n >, typename promote< T, U >::V, Dim, Dim23, i, k, m, n > operator^(const Ddg_Expr< A, T, Dim, Dim, i, j, k, l > &a, const Ddg_Expr< B, U, Dim, Dim23, j, l, m, n > &b)
Definition: Ddg_carat_Ddg.hpp:59
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::operator()
promote< T, U >::V operator()(const int N1, const int N2) const
Definition: Tensor2_carat_Tensor2.hpp:45
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::iterA
const Tensor2_Expr< A, T, Dim1, Dim, j, i > iterA
Definition: Tensor2_carat_Tensor2.hpp:90
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::iterA
const Tensor2_Expr< A, T, Dim, Dim1, i, j > iterA
Definition: Tensor2_carat_Tensor2.hpp:57
FTensor
JSON compatible output.
Definition: Christof_constructor.hpp:6
FTensor::Tensor2_symmetric_Expr
Definition: Tensor2_symmetric_Expr.hpp:36
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< Current_Dim > &) const
Definition: Tensor2_carat_Tensor2.hpp:62
FTensor::Tensor2_Expr< A, T, Dim, Dim1, i, j >
FTensor::Tensor2_carat_Tensor2
Definition: Tensor2_carat_Tensor2.hpp:15
A
constexpr AssemblyType A
Definition: operators_tests.cpp:30
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< 1 > &) const
Definition: Tensor2_carat_Tensor2.hpp:35
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::operator()
promote< T, U >::V operator()(const int N1, const int N2) const
Definition: Tensor2_carat_Tensor2.hpp:111
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::iterB
const Tensor2_Expr< B, U, Dim1, Dim, j, k > iterB
Definition: Tensor2_carat_Tensor2.hpp:91
FTensor::Number
Definition: Number.hpp:11
a
constexpr double a
Definition: approx_sphere.cpp:30
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< Current_Dim > &) const
Definition: Tensor2_carat_Tensor2.hpp:95
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::Tensor2_carat_Tensor2
Tensor2_carat_Tensor2(const Tensor2_Expr< A, T, Dim1, Dim, j, i > &a, const Tensor2_Expr< B, U, Dim, Dim1, k, j > &b)
Definition: Tensor2_carat_Tensor2.hpp:140
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::iterA
const Tensor2_Expr< A, T, Dim1, Dim, j, i > iterA
Definition: Tensor2_carat_Tensor2.hpp:123
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< Current_Dim > &) const
Definition: Tensor2_carat_Tensor2.hpp:29
FTensor::promote::V
T1 V
Definition: promote.hpp:17
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< Current_Dim > &) const
Definition: Tensor2_carat_Tensor2.hpp:128
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::Tensor2_carat_Tensor2
Tensor2_carat_Tensor2(const Tensor2_Expr< A, T, Dim, Dim1, i, j > &a, const Tensor2_Expr< B, U, Dim1, Dim, j, k > &b)
Definition: Tensor2_carat_Tensor2.hpp:41
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::operator()
promote< T, U >::V operator()(const int N1, const int N2) const
Definition: Tensor2_carat_Tensor2.hpp:78
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< 1 > &) const
Definition: Tensor2_carat_Tensor2.hpp:68
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< 1 > &) const
Definition: Tensor2_carat_Tensor2.hpp:134
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::eval
promote< T, U >::V eval(const int N1, const int N2, const Number< 1 > &) const
Definition: Tensor2_carat_Tensor2.hpp:101
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::iterB
const Tensor2_Expr< B, U, Dim, Dim1, k, j > iterB
Definition: Tensor2_carat_Tensor2.hpp:58
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::iterB
const Tensor2_Expr< B, U, Dim, Dim1, k, j > iterB
Definition: Tensor2_carat_Tensor2.hpp:124
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::iterA
const Tensor2_Expr< A, T, Dim, Dim1, i, j > iterA
Definition: Tensor2_carat_Tensor2.hpp:24
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim, Dim1, i, j, k, j >::Tensor2_carat_Tensor2
Tensor2_carat_Tensor2(const Tensor2_Expr< A, T, Dim, Dim1, i, j > &a, const Tensor2_Expr< B, U, Dim, Dim1, k, j > &b)
Definition: Tensor2_carat_Tensor2.hpp:74
k
FTensor::Index< 'k', 3 > k
Definition: matrix_function.cpp:20
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim1, Dim, j, i, j, k >::Tensor2_carat_Tensor2
Tensor2_carat_Tensor2(const Tensor2_Expr< A, T, Dim1, Dim, j, i > &a, const Tensor2_Expr< B, U, Dim1, Dim, j, k > &b)
Definition: Tensor2_carat_Tensor2.hpp:107
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim, Dim1, Dim1, Dim, i, j, j, k >::iterB
const Tensor2_Expr< B, U, Dim1, Dim, j, k > iterB
Definition: Tensor2_carat_Tensor2.hpp:25
EshelbianPlasticity::U
@ U
Definition: EshelbianContact.cpp:197
FTensor::Tensor2_carat_Tensor2< A, B, T, U, Dim1, Dim, Dim, Dim1, j, i, k, j >::operator()
promote< T, U >::V operator()(const int N1, const int N2) const
Definition: Tensor2_carat_Tensor2.hpp:144