v0.14.0
Selected publications featuring results obtained using MoFEM

Selected journal publications

  1. Athanasiadis, I., Shvarts, A.G., Ullah, Z., Lewandowski, K., Pearce, C.J. and Kaczmarczyk, Ł., 2023. A computational framework for crack propagation along contact interfaces and surfaces under load. Computer Methods in Applied Mechanics and Engineering, 414, p.116129. doi: https://doi.org/10.1016/j.cma.2023.116129

  2. Lewandowski, K., Barbera, D., Blackwell, P., Roohi, A.H., Athanasiadis, I., McBride, A., Steinmann, P., Pearce, C. and Kaczmarczyk, Ł., 2023. Multifield finite strain plasticity: Theory and numerics. Computer Methods in Applied Mechanics and Engineering, 414, p.116101. doi: https://doi.org/10.1016/j.cma.2023.116101

  3. Wakeni, M.F., Aggarwal, A., Kaczmarczyk, Ł., McBride, A.T., Athanasiadis, I., Pearce, C.J. and Steinmann, P., 2022. A p‐adaptive, implicit‐explicit mixed finite element method for diffusion‐reaction problems. International Journal for Numerical Methods in Engineering, 123(14), pp.3237-3263. doi: https://doi.org/10.1002/nme.6967

  4. Lockington, D., Brown, G., Pearce, C. and Kaczmarczyk, L., 2022. Evaluating the forces involved in bubble management in DMEK surgery–a mathematical and computational model with clinical implications. Journal of Cataract & Refractive Surgery, pp.10-1097. doi: https://doi.org/10.1097/j.jcrs.0000000000001309

  5. Lewandowski, K., Kaczmarczyk, Ł., Athanasiadis, I., Marshall, J.F., and Pearce, C.J., 2021. A computational framework for crack propagation in spatially heterogeneous materials. Philosophical Transactions of the Royal Society A, 379(2203), p.20200291. doi: https://doi.org/10.1098/rsta.2020.0291

  6. Kaczmarczyk, L., Nguyen, H., Ullah, Z., Wakeni, M., and Pearce, C., 2020. Solid shell prism elements based on hierarchical, heterogeneous, and anisotropic shape functions. arXiv preprint arXiv:2010.08799 doi: https://doi.org/10.48550/arXiv.2010.08799

  7. Kaczmarczyk, Ł., Ullah, Z., Lewandowski, K., Meng, X., Zhou, X.Y., Athanasiadis, I., Nguyen, H., Chalons-Mouriesse, C.A., Richardson, E.J., Miur, E., Shvarts, A.G., Wakeni, M. and Pearce, C.J., 2020. MoFEM: An open-source, parallel finite element library. Journal of Open Source Software, 5(45), p.1441. doi: https://doi.org/10.21105/joss.01441

  8. Ullah, Z., Zhou, X.Y., Kaczmarczyk, L., Archer, E., McIlhagger, A., and Harkin-Jones, E., 2019. A unified framework for the multi-scale computational homogenisation of 3D-textile composites. Composites Part B: Engineering, 167, pp.582-598. doi: https://doi.org/10.1016/j.compositesb.2019.03.027

  9. Kaczmarczyk, Ł., Ullah, Z., Pearce, C.J. Energy-consistent framework for continuously evolving 3D crack propagation. Computer Methods in Applied Mechanics and Engineering, 2017 Sep 1;324:54-73. doi: https://doi.org/10.1016/j.cma.2017.06.001

  10. Zhou, X.Y., Gosling, P.D., Ullah, Z., Kaczmarczyk, L., and Pearce, C.J., 2017. Stochastic multi-scale finite element-based reliability analysis for laminated composite structures. Applied Mathematical Modelling, 45, pp.457-473. doi: https://doi.org/10.1016/j.apm.2016.12.005

  11. Ullah, Z., Kaczmarczyk, L., and Pearce, C.J., 2017. Three-dimensional nonlinear micro/meso-mechanical response of fiber-reinforced polymer composites. Composite Structures, 161, pp.204-214.doi: https://doi.org/10.1016/j.compstruct.2016.11.059

  12. Ullah, Z., Grammatikos, S.A., Evernden, M.C., and Pearce, C.J., 2017. Multi-scale computational homogenisation to predict the long-term durability of composite structures. Computers & Structures, 181, pp.21-31. doi: https://doi.org/10.1016/j.compstruc.2016.11.002

  13. Zhou, X.Y., Gosling, P.D., Pearce, C.J., and Ullah, Z., 2016. Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties. Computer Methods in Applied Mechanics and Engineering, 300, pp.84-105. doi: https://doi.org/10.1016/j.cma.2015.10.020

  14. Zhou, X.Y., Gosling, P.D., Pearce, C.J., Ullah, Z., and Kaczmarczyk, L., 2016. Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. International Journal of Solids and Structures, 80, pp.368-380. doi: https://doi.org/10.1016/j.ijsolstr.2015.09.008

  15. Kaczmarczyk, Ł., Nezhad, M.M., and Pearce, C., 2014. Three‐dimensional brittle fracture: configurational‐force‐driven crack propagation. International Journal for Numerical Methods in Engineering, 97(7), pp.531-550. doi: https://doi.org/10.1002/nme.4603

Selected conference proceedings

  1. Radford, J., Nerenberg, S., Shvarts, A., Kaczmarcyk, L. and Faccio, D., 2022, July. Imaging Beyond 100 Transport Mean Free Paths using Variational Autoencoding. In Computational Optical Sensing and Imaging (pp. CM3A-5). Optica Publishing Group. doi: https://doi.org/10.1364/COSI.2022.CM3A.5

  2. Shvarts, A.G., Xu, Y., Min, G., Athanasiadis, I., Kaczmarczyk, L., Mulvihill, D.M., and Pearce, C.J., 2021. Finite-element modelling of triboelectric nanogenerators accounting for surface roughness. In Proceedings of UK Association for Computational Mechanics Conference 2021. doi: https://doi.org/10.17028/rd.lboro.14596023.v1

  3. Kuliková, A., Shvarts, A.G., Kaczmarczyk, L. and Pearce, C.J., Data-driven finite element method. In Proceedings of UK Association for Computational Mechanics Conference 2021. https://doi.org/10.17028/rd.lboro.14588577.v1

  4. Athanasiadis, I., Kaczmarczyk, L., Ullah, Z., and Pearce, C.J., 2019, April. Mortar contact formulation for hierarchical basis functions using a smooth active set strategy. In Proceedings of UK Association for Computational Mechanics Conference 2019. https://doi.org/10.5281/zenodo.3885015

  5. Kaczmarczyk, L., Ullah, Z., and Pearce, C., 2016. Prism solid-shell with heterogeneous and hierarchical approximation basis. UKACM Cardiff, UK. doi: https://doi.org/10.5281/zenodo.583683

  6. Ullah, Z., Kaczmarczyk, L., and Pearce, C.J., 2016. Nonlinear micro-mechanical response of the fibre-reinforced polymer composites including matrix damage and fibre-matrix decohesion. doi: https://doi.org/10.13140/RG.2.1.1696.4245

  7. Al-Budairi, H., Kaczmarczyk, L., and Pearce, C.J., 2015. Modelling of Dynamic Crack Propagation in 3D Elastic Continuum Using Configurational Mechanics. ePrint: https://eprints.gla.ac.uk/118527/