v0.14.0
src
ftensor
src
FTensor
Tensor1
Tensor1_value.hpp
Go to the documentation of this file.
1
/* The general version, not for pointers. */
2
3
#include <iostream>
4
#pragma once
5
6
namespace
FTensor
7
{
8
template
<
class
T,
int
Tensor_Dim>
class
Tensor1
9
{
10
T
data
[Tensor_Dim];
11
12
public
:
13
/* Initializations for varying numbers of elements. */
14
template
<
class
...
U
> constexpr
Tensor1
(
U
...
d
) :
data
{
d
...}
15
{
16
static_assert(
sizeof
...(
d
) ==
sizeof
(
data
) /
sizeof
(T),
17
"Incorrect number of Arguments. Constructor should "
18
"initialize the entire Tensor"
);
19
};
20
21
constexpr
Tensor1
() {}
22
23
/* There are two operator(int)'s, one for non-consts that lets you
24
change the value, and one for consts that doesn't. */
25
26
T &
operator()
(
const
int
N
)
27
{
28
#ifdef FTENSOR_DEBUG
29
if
(
N
>= Tensor_Dim ||
N
< 0)
30
{
31
std::stringstream s;
32
s <<
"Bad index in Tensor1<T,"
<< Tensor_Dim <<
">.operator("
<<
N
33
<<
")"
<< std::endl;
34
throw
std::out_of_range(s.str());
35
}
36
#endif
37
return
data
[
N
];
38
}
39
T
operator()
(
const
int
N
)
const
40
{
41
#ifdef FTENSOR_DEBUG
42
if
(
N
>= Tensor_Dim ||
N
< 0)
43
{
44
std::stringstream s;
45
s <<
"Bad index in Tensor1<T,"
<< Tensor_Dim <<
">.operator("
<<
N
46
<<
") const"
<< std::endl;
47
throw
std::out_of_range(s.str());
48
}
49
#endif
50
return
data
[
N
];
51
}
52
53
/* These operator()'s are the first part in constructing template
54
expressions. They can be used to slice off lower dimensional
55
parts. They are not entirely safe, since you can accidentaly use a
56
higher dimension than what is really allowed (like Dim=5). */
57
58
template
<
char
i,
int
Dim>
59
typename
std::enable_if
<
60
(Tensor_Dim >= Dim),
Tensor1_Expr
<
Tensor1<T, Tensor_Dim>
, T, Dim,
i
>>::
type
61
operator
()(
const
Index<i, Dim>
&)
62
{
63
return
Tensor1_Expr<Tensor1<T, Tensor_Dim>
, T, Dim,
i
>(*this);
64
}
65
66
template
<
char
i,
int
Dim>
67
typename
std::enable_if
<
68
(Tensor_Dim >= Dim),
69
Tensor1_Expr
<
const
Tensor1<T, Tensor_Dim>
, T, Dim,
i
>>::
type
70
operator
()(
const
Index<i, Dim>
&)
const
71
{
72
return
Tensor1_Expr<const Tensor1<T, Tensor_Dim>
, T, Dim,
i
>(*this);
73
}
74
75
/* Convenience functions */
76
77
Tensor1<T, Tensor_Dim>
normalize
()
78
{
79
const
Index<'a', Tensor_Dim>
a
;
80
(*this)(
a
) /=
l2
();
81
return
*
this
;
82
}
83
84
T
l2
()
const
{
return
sqrt(
l2_squared
(
Number<Tensor_Dim>
())); }
85
86
template
<
int
Current_Dim> T
l2_squared
(
const
Number<Current_Dim>
&)
const
87
{
88
return
data
[Current_Dim - 1] *
data
[Current_Dim - 1]
89
+
l2_squared
(
Number<Current_Dim - 1>
());
90
}
91
T
l2_squared
(
const
Number<1>
&)
const
{
return
data
[0] *
data
[0]; }
92
};
93
94
template
<
class
T,
int
Tensor_Dim>
95
std::ostream &
operator<<
(std::ostream &os,
96
const
FTensor::Tensor1<T, Tensor_Dim>
&
t
) {
97
os <<
'['
;
98
for
(
int
i
= 0;
i
+ 1 < Tensor_Dim; ++
i
) {
99
os <<
t
(
i
) <<
','
;
100
}
101
if
(Tensor_Dim > 0) {
102
os <<
t
(Tensor_Dim - 1);
103
}
104
os <<
']'
;
105
return
os;
106
}
107
108
template
<
class
T,
int
Tensor_Dim>
109
std::istream &
operator>>
(std::istream &is,
110
FTensor::Tensor1<T, Tensor_Dim>
&
t
) {
111
char
c
;
112
is >>
c
;
113
for
(
int
i
= 0;
i
+ 1 < Tensor_Dim; ++
i
) {
114
is >>
t
(
i
) >>
c
;
115
}
116
if
(Tensor_Dim > 0) {
117
is >>
t
(Tensor_Dim - 1);
118
}
119
is >>
c
;
120
return
is;
121
}
122
}
123
/// JSON compatible output
124
FTensor::Tensor1::operator()
T operator()(const int N) const
Definition:
Tensor1_value.hpp:39
FTensor
JSON compatible output.
Definition:
Christof_constructor.hpp:6
FTensor::Tensor1
Definition:
Tensor1_value.hpp:8
FTensor::operator>>
std::istream & operator>>(std::istream &is, FTensor::Tensor1< T, Tensor_Dim > &t)
Definition:
Tensor1_value.hpp:109
FTensor::Tensor1::l2
T l2() const
Definition:
Tensor1_value.hpp:84
FTensor::d
const Tensor1_Expr< const dTensor0< T, Dim, i >, typename promote< T, double >::V, Dim, i > d(const Tensor0< T * > &a, const Index< i, Dim > index, const Tensor1< int, Dim > &d_ijk, const Tensor1< double, Dim > &d_xyz)
Definition:
dTensor0.hpp:27
FTensor::Tensor1::data
T data[Tensor_Dim]
Definition:
Tensor1_value.hpp:10
c
const double c
speed of light (cm/ns)
Definition:
initial_diffusion.cpp:39
FTensor::Number
Definition:
Number.hpp:11
FTensor::Tensor1_Expr
Definition:
Tensor1_Expr.hpp:27
a
constexpr double a
Definition:
approx_sphere.cpp:30
FTensor::Tensor1::Tensor1
constexpr Tensor1()
Definition:
Tensor1_value.hpp:21
convert.type
type
Definition:
convert.py:64
FTensor::Tensor1::Tensor1
constexpr Tensor1(U... d)
Definition:
Tensor1_value.hpp:14
FTensor::Tensor1::l2_squared
T l2_squared(const Number< 1 > &) const
Definition:
Tensor1_value.hpp:91
FTensor::operator<<
std::ostream & operator<<(std::ostream &os, const FTensor::Tensor1< T, Tensor_Dim > &t)
Definition:
Tensor1_value.hpp:95
t
constexpr double t
plate stiffness
Definition:
plate.cpp:59
i
FTensor::Index< 'i', SPACE_DIM > i
Definition:
hcurl_divergence_operator_2d.cpp:27
FTensor::Index
Definition:
Index.hpp:23
FTensor::Tensor1::normalize
Tensor1< T, Tensor_Dim > normalize()
Definition:
Tensor1_value.hpp:77
std::enable_if
Definition:
enable_if.hpp:7
N
const int N
Definition:
speed_test.cpp:3
FTensor::Tensor1::l2_squared
T l2_squared(const Number< Current_Dim > &) const
Definition:
Tensor1_value.hpp:86
EshelbianPlasticity::U
@ U
Definition:
EshelbianContact.cpp:197
FTensor::Tensor1::operator()
T & operator()(const int N)
Definition:
Tensor1_value.hpp:26
Generated by
Doxygen
1.8.17 and hosted at