v0.14.0
Tensor2_symmetric_value.hpp
Go to the documentation of this file.
1 #pragma once
2 
3 /* A general version, not for pointers. */
4 
5 #include <ostream>
6 #ifdef FTENSOR_DEBUG
7 #include <sstream>
8 #include <stdexcept>
9 #endif
10 
11 namespace FTensor
12 {
13  template <class T, int Tensor_Dim> class Tensor2_symmetric
14  {
15  T data[(Tensor_Dim * (Tensor_Dim + 1)) / 2];
16 
17  public:
18  template <class... U> Tensor2_symmetric(U... d) : data{d...}
19  {
20  static_assert(sizeof...(d) == sizeof(data) / sizeof(T),
21  "Incorrect number of Arguments. Constructor should "
22  "initialize the entire Tensor");
23  }
24 
26 
27  /* There are two operator(int,int)'s, one for non-consts that lets you
28  change the value, and one for consts that doesn't. */
29 
30  T &operator()(const int N1, const int N2)
31  {
32 #ifdef FTENSOR_DEBUG
33  if(N1 >= Tensor_Dim || N1 < 0 || N2 >= Tensor_Dim || N2 < 0)
34  {
35  std::stringstream s;
36  s << "Bad index in Tensor2_symmetric<T," << Tensor_Dim
37  << ">.operator(" << N1 << "," << N2 << ")" << std::endl;
38  throw std::out_of_range(s.str());
39  }
40 #endif
41  return N1 > N2 ? data[N1 + (N2 * (2 * Tensor_Dim - N2 - 1)) / 2]
42  : data[N2 + (N1 * (2 * Tensor_Dim - N1 - 1)) / 2];
43  }
44 
45  T operator()(const int N1, const int N2) const
46  {
47 #ifdef FTENSOR_DEBUG
48  if(N1 >= Tensor_Dim || N1 < 0 || N2 >= Tensor_Dim || N2 < 0)
49  {
50  std::stringstream s;
51  s << "Bad index in Tensor2_symmetric<T," << Tensor_Dim
52  << ">.operator(" << N1 << "," << N2 << ") const" << std::endl;
53  throw std::out_of_range(s.str());
54  }
55 #endif
56  return N1 > N2 ? data[N1 + (N2 * (2 * Tensor_Dim - N2 - 1)) / 2]
57  : data[N2 + (N1 * (2 * Tensor_Dim - N1 - 1)) / 2];
58  }
59 
60  template <int N1, int N2>
61  inline T operator()(const Number<N1> &, const Number<N2>()) const {
62 
63  static_assert(N1 < Tensor_Dim, "Bad index");
64  static_assert(N2 < Tensor_Dim, "Bad index");
65 
66  if constexpr (N1 > N2)
67  return data[N1 + (N2 * (2 * Tensor_Dim - N2 - 1)) / 2];
68  else
69  return data[N2 + (N1 * (2 * Tensor_Dim - N1 - 1)) / 2];
70  }
71 
72  template <int N1, int N2>
73  inline T &operator()(const Number<N1> &, const Number<N2>()) {
74 
75  static_assert(N1 < Tensor_Dim, "Bad index");
76  static_assert(N2 < Tensor_Dim, "Bad index");
77 
78  if constexpr (N1 > N2)
79  return data[N1 + (N2 * (2 * Tensor_Dim - N2 - 1)) / 2];
80  else
81  return data[N2 + (N1 * (2 * Tensor_Dim - N1 - 1)) / 2];
82  }
83 
84  /* These operator()'s are the first part in constructing template
85  expressions. They can be used to slice off lower dimensional
86  parts. They are not entirely safe, since you can accidentally use a
87  higher dimension than what is really allowed (like Dim=5). */
88 
89  /* This returns a Tensor2_Expr, since the indices are not really
90  symmetric anymore since they cover different dimensions. */
91 
92  template <char i, char j, int Dim0, int Dim1>
93  typename std::enable_if<
94  (Tensor_Dim >= Dim0 && Tensor_Dim >= Dim1),
96  operator()(const Index<i, Dim0>, const Index<j, Dim1>)
97  {
98  return Tensor2_Expr<Tensor2_symmetric<T, Tensor_Dim>, T, Dim0, Dim1, i,
99  j>(*this);
100  }
101 
102  template <char i, char j, int Dim0, int Dim1>
103  typename std::enable_if<(Tensor_Dim >= Dim0 && Tensor_Dim >= Dim1),
105  T, Dim0, Dim1, i, j>>::type
106  operator()(const Index<i, Dim0>, const Index<j, Dim1>) const
107  {
109  Dim1, i, j>(*this);
110  }
111 
112  /* This returns a Tensor2_symmetric_Expr, since the indices are still
113  symmetric on the lower dimensions. */
114 
115  template <char i, char j, int Dim>
116  typename std::enable_if<
117  (Tensor_Dim >= Dim),
119  operator()(const Index<i, Dim>, const Index<j, Dim>)
120  {
122  i, j>(*this);
123  }
124 
125  template <char i, char j, int Dim>
126  typename std::enable_if<
127  (Tensor_Dim >= Dim),
129  j>>::type
130  operator()(const Index<i, Dim>, const Index<j, Dim>) const
131  {
133  Dim, i, j>(*this);
134  }
135 
136  /* This is for expressions where a number is used for one slot, and
137  an index for another, yielding a Tensor1_Expr. The non-const
138  versions don't actually create a Tensor2_number_rhs_[01] object.
139  They create a Tensor1_Expr directly, which provides the
140  appropriate indexing operators. The const versions do create a
141  Tensor2_number_[01]. */
142 
143  template <char i, int N, int Dim>
144  typename std::enable_if<
145  (Tensor_Dim >= Dim && Tensor_Dim > N),
147  T, Dim, i>>::type
148  operator()(const Index<i, Dim>, const Number<N> &)
149  {
150  using TensorExpr
153  }
154 
155  template <char i, int N, int Dim>
156  typename std::enable_if<
157  (Tensor_Dim >= Dim && Tensor_Dim > N),
159  T, Dim, i>>::type
160  operator()(const Index<i, Dim>, const Number<N> &) const
161  {
162  using TensorExpr
164  return Tensor1_Expr<TensorExpr, T, Dim, i>(TensorExpr(*this));
165  }
166 
167  template <char i, int N, int Dim>
168  typename std::enable_if<
169  (Tensor_Dim > N && Tensor_Dim >= Dim),
171  T, Dim, i>>::type
172  operator()(const Number<N> &, const Index<i, Dim>)
173  {
174  using TensorExpr
177  }
178 
179  template <char i, int N, int Dim>
180  typename std::enable_if<
181  (Tensor_Dim > N && Tensor_Dim >= Dim),
183  T, Dim, i>>::type
184  operator()(const Number<N> &, const Index<i, Dim>) const
185  {
186  using TensorExpr
188  return Tensor1_Expr<TensorExpr, T, Dim, i>(TensorExpr(*this));
189  }
190 
191  /* Specializations for using actual numbers instead of Number<> */
192 
193  template <char i, int Dim>
194  typename std::enable_if<
195  (Tensor_Dim >= Dim),
197  T, Dim, i>>::type
198  operator()(const Index<i, Dim>, const int N) const
199  {
200  using TensorExpr
202  return Tensor1_Expr<TensorExpr, T, Dim, i>(TensorExpr(*this, N));
203  }
204 
205  template <char i, int Dim>
206  typename std::enable_if<
207  (Tensor_Dim >= Dim),
209  T, Dim, i>>::type
210  operator()(const int N, const Index<i, Dim>) const
211  {
212  using TensorExpr
214  return Tensor1_Expr<TensorExpr, T, Dim, i>(TensorExpr(*this, N));
215  }
216 
217  /* These two operator()'s return the Tensor2 with internal
218  contractions, yielding a T. I have to specify one for both
219  const and non-const because otherwise the compiler will use the
220  operator() which gives a Tensor2_Expr<>. */
221 
222  template <char i, int Dim>
223  typename std::enable_if<(Tensor_Dim >= Dim), T>::type
224  operator()(const Index<i, Dim>, const Index<i, Dim>)
225  {
226  return internal_contract(Number<Dim>());
227  }
228 
229  template <char i, int Dim>
230  typename std::enable_if<(Tensor_Dim >= Dim), T>::type
231  operator()(const Index<i, Dim>, const Index<i, Dim>) const
232  {
233  return internal_contract(Number<Dim>());
234  }
235 
236  private:
237  template <int N> T internal_contract(const Number<N> &) const
238  {
239  return data[N - 1 + ((N - 1) * (2 * Tensor_Dim - N)) / 2]
241  }
242 
243  T internal_contract(const Number<1> &) const { return data[0]; }
244  };
245 }
246 
247 /// JSON compatible output. It only outputs unique elements, so a 3x3
248 /// symmetric matrix only outputs 6 elements.
249 
250 namespace FTensor
251 {
252  template <class T, int Tensor_Dim>
254  std::ostream &os, const FTensor::Tensor2_symmetric<T, Tensor_Dim> &t,
255  const int &i)
256  {
257  os << '[';
258  for(int j = i; j + 1 < Tensor_Dim; ++j)
259  {
260  os << t(i, j) << ',';
261  }
262  if(Tensor_Dim > 0)
263  {
264  os << t(i, Tensor_Dim - 1);
265  }
266  os << ']';
267  return os;
268  }
269 
270  template <class T, int Tensor_Dim>
271  std::ostream &operator<<(std::ostream &os,
273  os << '[';
274  for (int i = 0; i + 1 < Tensor_Dim; ++i) {
276  os << ',';
277  }
278  if (Tensor_Dim > 0) {
279  FTensor::Tensor2_symmetric_ostream_row(os, t, Tensor_Dim - 1);
280  }
281  os << ']';
282  return os;
283  }
284 }
285 
286 namespace FTensor
287 {
288  template <class T, int Tensor_Dim>
289  std::istream &
292  const int &i)
293  {
294  char c;
295  is >> c;
296  for(int j = i; j + 1 < Tensor_Dim; ++j)
297  {
298  is >> t(i, j) >> c;
299  }
300  if(Tensor_Dim > 0)
301  {
302  is >> t(i, Tensor_Dim - 1);
303  }
304  is >> c;
305  return is;
306  }
307 
308  template <class T, int Tensor_Dim>
309  std::istream &operator>>(std::istream &is,
311  char c;
312  is >> c;
313  for (int i = 0; i + 1 < Tensor_Dim; ++i) {
315  is >> c;
316  }
317  if (Tensor_Dim > 0) {
318  FTensor::Tensor2_symmetric_istream_row(is, t, Tensor_Dim - 1);
319  }
320  is >> c;
321  return is;
322  }
323 }
FTensor
JSON compatible output.
Definition: Christof_constructor.hpp:6
FTensor::Tensor2_symmetric::Tensor2_symmetric
Tensor2_symmetric()
Definition: Tensor2_symmetric_value.hpp:25
FTensor::operator>>
std::istream & operator>>(std::istream &is, FTensor::Tensor1< T, Tensor_Dim > &t)
Definition: Tensor1_value.hpp:109
FTensor::Tensor2_symmetric_Expr
Definition: Tensor2_symmetric_Expr.hpp:36
FTensor::Tensor2_symmetric::internal_contract
T internal_contract(const Number< 1 > &) const
Definition: Tensor2_symmetric_value.hpp:243
FTensor::Tensor2_number_rhs_1
Definition: Tensor2_number.hpp:29
FTensor::Tensor2_symmetric::internal_contract
T internal_contract(const Number< N > &) const
Definition: Tensor2_symmetric_value.hpp:237
FTensor::Tensor2_numeral_1
Definition: Tensor2_numeral.hpp:8
FTensor::Tensor2_Expr
Definition: Tensor2_Expr.hpp:26
FTensor::d
const Tensor1_Expr< const dTensor0< T, Dim, i >, typename promote< T, double >::V, Dim, i > d(const Tensor0< T * > &a, const Index< i, Dim > index, const Tensor1< int, Dim > &d_ijk, const Tensor1< double, Dim > &d_xyz)
Definition: dTensor0.hpp:27
FTensor::Tensor2_symmetric::operator()
T operator()(const Number< N1 > &, const Number< N2 >()) const
Definition: Tensor2_symmetric_value.hpp:61
FTensor::Tensor2_symmetric::data
T data[(Tensor_Dim *(Tensor_Dim+1))/2]
Definition: Tensor2_symmetric_value.hpp:15
FTensor::Tensor2_symmetric
Definition: Tensor2_symmetric_value.hpp:13
FTensor::Tensor2_number_1
Definition: Tensor2_number.hpp:8
c
const double c
speed of light (cm/ns)
Definition: initial_diffusion.cpp:39
FTensor::Number
Definition: Number.hpp:11
FTensor::Tensor1_Expr
Definition: Tensor1_Expr.hpp:27
convert.type
type
Definition: convert.py:64
FTensor::Tensor2_number_0
Definition: Tensor2_number.hpp:17
FTensor::operator<<
std::ostream & operator<<(std::ostream &os, const FTensor::Tensor1< T, Tensor_Dim > &t)
Definition: Tensor1_value.hpp:95
FTensor::Tensor2_symmetric::operator()
T operator()(const int N1, const int N2) const
Definition: Tensor2_symmetric_value.hpp:45
FTensor::Tensor2_symmetric_ostream_row
std::ostream & Tensor2_symmetric_ostream_row(std::ostream &os, const FTensor::Tensor2_symmetric< T, Tensor_Dim > &t, const int &i)
Definition: Tensor2_symmetric_value.hpp:253
FTensor::Tensor2_symmetric_istream_row
std::istream & Tensor2_symmetric_istream_row(std::istream &is, FTensor::Tensor2_symmetric< T, Tensor_Dim > &t, const int &i)
Definition: Tensor2_symmetric_value.hpp:290
t
constexpr double t
plate stiffness
Definition: plate.cpp:59
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
FTensor::Index
Definition: Index.hpp:23
std::enable_if
Definition: enable_if.hpp:7
N
const int N
Definition: speed_test.cpp:3
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
FTensor::Tensor2_number_rhs_0
Definition: Tensor2_number.hpp:26
FTensor::Tensor2_symmetric::operator()
T & operator()(const int N1, const int N2)
Definition: Tensor2_symmetric_value.hpp:30
FTensor::Tensor2_symmetric::operator()
T & operator()(const Number< N1 > &, const Number< N2 >())
Definition: Tensor2_symmetric_value.hpp:73
FTensor::Tensor2_symmetric::Tensor2_symmetric
Tensor2_symmetric(U... d)
Definition: Tensor2_symmetric_value.hpp:18
EshelbianPlasticity::U
@ U
Definition: EshelbianContact.cpp:197
FTensor::Tensor2_numeral_0
Definition: Tensor2_numeral.hpp:18