v0.14.0
fem_tools.c
Go to the documentation of this file.
1 /** \file fem_tools.c
2  * \brief Loose implementation of some useful functions
3  */
4 
5 
6 
7 #include <definitions.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <math.h>
11 #include <complex.h>
12 #include <assert.h>
13 #include <string.h>
14 
15 #include <fem_tools.h>
16 #include <gm_rule.h>
17 
18 #include <h1_hdiv_hcurl_l2.h>
19 
20 static PetscErrorCode ierr;
21 
22 double ShapeDetJacVolume(double *jac) {
23  double det_jac;
24  __CLPK_integer ipiv[4];
25  __CLPK_integer info = lapack_dgetrf(3, 3, jac, 3, ipiv);
26  if (info != 0)
27  return -1;
28  int i = 0, j = 0;
29  det_jac = 1.;
30  for (; i < 3; i++) {
31  det_jac *= jac[3 * i + i];
32  if (ipiv[i] != i + 1)
33  j++;
34  }
35  if ((j - (j / 2) * 2) != 0)
36  det_jac = -det_jac;
37  return det_jac;
38 }
39 PetscErrorCode ShapeInvJacVolume(double *jac) {
41  __CLPK_integer ipiv[4];
42  __CLPK_doublereal work[3];
43  __CLPK_integer lwork = 3;
44  __CLPK_integer info;
45  info = lapack_dgetrf(3, 3, jac, 3, ipiv);
46  if (info != 0)
47  SETERRQ1(PETSC_COMM_SELF, 1, "info = %d", info);
48  info = lapack_dgetri(3, jac, 3, ipiv, work, lwork);
49  if (info != 0)
50  SETERRQ1(PETSC_COMM_SELF, 1, "info = %d", info);
52 }
53 
54 // MBTRI
56  double *G_TRI_X,
57  double *G_TRI_W) {
59 
60  int dim_num = 1;
61  int point;
62  int point_num;
63  double *w;
64  double *x;
65 
66  // GM_RULE_SET determines the weights and abscissas
67  // pof a Grundmann-Moeller quadrature rule for
68  // the DIM_NUM dimensional simplex,
69  // using a rule of in index RULE,
70  // which will have degree of exactness 2*RULE+1.
71 
72  // printf ( " Here we use DIM_NUM = %d\n", dim_num );
73  // printf ( " RULE = %d\n", rule );
74  // printf ( " DEGREE = %d\n", 2 * rule + 1 );
75 
76  point_num = gm_rule_size(rule, dim_num);
77 
78  ierr = PetscMalloc(point_num * sizeof(double), &w);
79  CHKERRQ(ierr);
80  ierr = PetscMalloc(dim_num * point_num * sizeof(double), &x);
81  CHKERRQ(ierr);
82 
83  gm_rule_set(rule, dim_num, point_num, w, x);
84 
85  for (point = 0; point < point_num; point++) {
86  G_TRI_X[point] = x[0 + point * dim_num];
87  G_TRI_W[point] = w[point];
88  }
89 
90  ierr = PetscFree(w);
91  CHKERRQ(ierr);
92  ierr = PetscFree(x);
93  CHKERRQ(ierr);
94 
96 }
97 
99  double *G_TRI_X,
100  double *G_TRI_Y,
101  double *G_TRI_W) {
103 
104  int dim_num = 2;
105  int point;
106  int point_num;
107  double *w;
108  double *x;
109 
110  // GM_RULE_SET determines the weights and abscissas
111  // pof a Grundmann-Moeller quadrature rule for
112  // the DIM_NUM dimensional simplex,
113  // using a rule of in index RULE,
114  // which will have degree of exactness 2*RULE+1.
115 
116  // printf ( " Here we use DIM_NUM = %d\n", dim_num );
117  // printf ( " RULE = %d\n", rule );
118  // printf ( " DEGREE = %d\n", 2 * rule + 1 );
119 
120  point_num = gm_rule_size(rule, dim_num);
121 
122  ierr = PetscMalloc(point_num * sizeof(double), &w);
123  CHKERRQ(ierr);
124  ierr = PetscMalloc(dim_num * point_num * sizeof(double), &x);
125  CHKERRQ(ierr);
126 
127  gm_rule_set(rule, dim_num, point_num, w, x);
128 
129  for (point = 0; point < point_num; point++) {
130  G_TRI_X[point] = x[0 + point * dim_num];
131  G_TRI_Y[point] = x[1 + point * dim_num];
132  G_TRI_W[point] = w[point];
133  }
134 
135  ierr = PetscFree(w);
136  CHKERRQ(ierr);
137  ierr = PetscFree(x);
138  CHKERRQ(ierr);
139 
141 }
142 
144  double *G_TET_X,
145  double *G_TET_Y,
146  double *G_TET_Z,
147  double *G_TET_W) {
149 
150  int dim_num = 3;
151  int point;
152  int point_num;
153  double *w;
154  double *x;
155 
156  // printf ( " Here we use DIM_NUM = %d\n", dim_num );
157  // printf ( " RULE = %d\n", rule );
158  // printf ( " DEGREE = %d\n", 2 * rule + 1 );
159 
160  point_num = gm_rule_size(rule, dim_num);
161 
162  ierr = PetscMalloc(point_num * sizeof(double), &w);
163  CHKERRQ(ierr);
164  ierr = PetscMalloc(dim_num * point_num * sizeof(double), &x);
165  CHKERRQ(ierr);
166 
167  gm_rule_set(rule, dim_num, point_num, w, x);
168  for (point = 0; point < point_num; point++) {
169  G_TET_X[point] = x[0 + point * dim_num];
170  G_TET_Y[point] = x[1 + point * dim_num];
171  G_TET_Z[point] = x[2 + point * dim_num];
172  G_TET_W[point] = w[point];
173  }
174 
175  ierr = PetscFree(w);
176  CHKERRQ(ierr);
177  ierr = PetscFree(x);
178  CHKERRQ(ierr);
179 
181 }
182 PetscErrorCode ShapeMBTRI(double *N, const double *X, const double *Y,
183  const int G_DIM) {
185  int ii = 0;
186  for (; ii < G_DIM; ii++) {
187  double x = X[ii], y = Y[ii];
188  N[3 * ii + 0] = N_MBTRI0(x, y);
189  N[3 * ii + 1] = N_MBTRI1(x, y);
190  N[3 * ii + 2] = N_MBTRI2(x, y);
191  }
193 }
194 PetscErrorCode ShapeDiffMBTRI(double *diffN) {
196  diffN[0] = diffN_MBTRI0x;
197  diffN[1] = diffN_MBTRI0y;
198  diffN[2] = diffN_MBTRI1x;
199  diffN[3] = diffN_MBTRI1y;
200  diffN[4] = diffN_MBTRI2x;
201  diffN[5] = diffN_MBTRI2y;
203 }
204 PetscErrorCode ShapeFaceBaseMBTRI(double *diffN, const double *coords,
205  double *normal, double *s1, double *s2) {
207 
208  double diffX_ksi[3];
209  double diffX_eta[3];
210  int ii = 0;
211  for (; ii < 3; ii++) {
212  diffX_ksi[ii] = cblas_ddot(3, &coords[ii], 3, &diffN[0], 2);
213  diffX_eta[ii] = cblas_ddot(3, &coords[ii], 3, &diffN[1], 2);
214  }
215  if (s1 != NULL) {
216  cblas_dcopy(3, diffX_ksi, 1, s1, 1);
217  }
218  if (s2 != NULL) {
219  cblas_dcopy(3, diffX_eta, 1, s2, 1);
220  }
221  double Spin_diffX_ksi[9];
222  ierr = Spin(Spin_diffX_ksi, diffX_ksi);
223  CHKERRQ(ierr);
224  cblas_dgemv(CblasRowMajor, CblasNoTrans, 3, 3, 1., Spin_diffX_ksi, 3,
225  diffX_eta, 1, 0., normal, 1);
227 }
228 
229 PetscErrorCode ShapeFaceNormalMBTRI(double *diffN, const double *coords,
230  double *normal) {
232  ierr = ShapeFaceBaseMBTRI(diffN, coords, normal, NULL, NULL);
233  CHKERRQ(ierr);
235 }
236 
237 PetscErrorCode ShapeFaceDiffNormalMBTRI(double *diffN, const double *coords,
238  double *diff_normal) {
240  // N = Spin(dX/dksi)*dX/deta = -Spin(dX/deta)*dX/dksi
241 
242  double diffX_ksi[3];
243  double diffX_eta[3];
244  int ii = 0;
245  for (; ii < 3; ii++) {
246  diffX_ksi[ii] = cblas_ddot(3, &coords[ii], 3, &diffN[0], 2);
247  diffX_eta[ii] = cblas_ddot(3, &coords[ii], 3, &diffN[1], 2);
248  }
249  double Spin_diffX_ksi[9];
250  ierr = Spin(Spin_diffX_ksi, diffX_ksi);
251  CHKERRQ(ierr);
252  double Spin_diffX_eta[9];
253  ierr = Spin(Spin_diffX_eta, diffX_eta);
254  CHKERRQ(ierr);
255  double B_ksi[3 * 9];
256  bzero(B_ksi, 3 * 9 * sizeof(double));
257  double B_eta[3 * 9];
258  bzero(B_eta, 3 * 9 * sizeof(double));
259  // B_ksi[] = [
260  // diffN[2*0+0], 0, 0, diffN[2*1+0], 0, 0, diffN[2*2+0], 0,
261  // 0
262  // 0, diffN[2*0+0], 0, 0, diffN[2*1+0], 0, 0, diffN[2*2+0],
263  // 0
264  // 0, 0, diffM[2*0+0], 0, 0, diffN[2*1+0], 0, 0,
265  // diffN[2*2+0]
266  //]
267  // B_eta[] = [
268  // diffN[2*0+1], 0, 0, diffN[2*1+1], 0, 0, diffN[2*2+1], 0,
269  // 0
270  // 0, diffN[2*0+1], 0, 0, diffN[2*1+1], 0, 0, diffN[2*2+1],
271  // 0
272  // 0, 0, diffM[2*0+1], 0, 0, diffN[2*1+1], 0, 0,
273  // diffN[2*2+1]
274  //]
275  ii = 0;
276  for (; ii < 3; ii++) {
277  cblas_dcopy(3, &diffN[0], 2, &B_ksi[ii * 9 + ii], 3);
278  cblas_dcopy(3, &diffN[1], 2, &B_eta[ii * 9 + ii], 3);
279  }
280  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 3, 9, 3, +1.,
281  Spin_diffX_ksi, 3, B_eta, 9, 0., diff_normal, 9);
282  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 3, 9, 3, -1.,
283  Spin_diffX_eta, 3, B_ksi, 9, 1., diff_normal, 9);
285 }
286 
287 // MBTET
288 PetscErrorCode ShapeJacMBTET(double *diffN, const double *coords, double *jac) {
290  int ii, jj, kk;
291  bzero(jac, sizeof(double) * 9);
292  for (ii = 0; ii < 4; ii++) // shape func.
293  for (jj = 0; jj < 3; jj++) // space
294  for (kk = 0; kk < 3; kk++) // derivative of shape func.
295  jac[jj * 3 + kk] += diffN[ii * 3 + kk] * coords[ii * 3 + jj];
297 }
298 double ShapeVolumeMBTET(double *diffN, const double *coords) {
299  double Jac[9];
300  ShapeJacMBTET(diffN, coords, Jac);
301  double detJac = ShapeDetJacVolume(Jac);
302  // printf("detJac = +%6.4e\n",detJac);
303  // print_mat(Jac,3,3);
304  return detJac * G_TET_W1[0] / 6.;
305 }
306 PetscErrorCode ShapeMBTET(double *N, const double *G_X, const double *G_Y,
307  const double *G_Z, int DIM) {
309  int ii = 0;
310  for (; ii < DIM; ii++) {
311  double x = G_X[ii], y = G_Y[ii], z = G_Z[ii];
312  N[4 * ii + 0] = N_MBTET0(x, y, z);
313  N[4 * ii + 1] = N_MBTET1(x, y, z);
314  N[4 * ii + 2] = N_MBTET2(x, y, z);
315  N[4 * ii + 3] = N_MBTET3(x, y, z);
316  }
318 }
319 PetscErrorCode ShapeDiffMBTET(double *diffN) {
321  diffN[0] = diffN_MBTET0x;
322  diffN[1] = diffN_MBTET0y;
323  diffN[2] = diffN_MBTET0z;
324  diffN[3] = diffN_MBTET1x;
325  diffN[4] = diffN_MBTET1y;
326  diffN[5] = diffN_MBTET1z;
327  diffN[6] = diffN_MBTET2x;
328  diffN[7] = diffN_MBTET2y;
329  diffN[8] = diffN_MBTET2z;
330  diffN[9] = diffN_MBTET3x;
331  diffN[10] = diffN_MBTET3y;
332  diffN[11] = diffN_MBTET3z;
334 }
335 PetscErrorCode ShapeMBTET_inverse(double *N, double *diffN,
336  const double *elem_coords,
337  const double *glob_coords,
338  double *loc_coords) {
340  double A[3 * 3];
341  int IPIV[3];
342  // COL MAJOR
343  // X
344  A[0 + 3 * 0] =
345  cblas_ddot(4, &diffN[0 * 3 + 0], 3, &elem_coords[0 * 3 + 0], 3);
346  A[0 + 3 * 1] =
347  cblas_ddot(4, &diffN[0 * 3 + 1], 3, &elem_coords[0 * 3 + 0], 3);
348  A[0 + 3 * 2] =
349  cblas_ddot(4, &diffN[0 * 3 + 2], 3, &elem_coords[0 * 3 + 0], 3);
350  loc_coords[0] =
351  glob_coords[0] - cblas_ddot(4, &N[0], 1, &elem_coords[0 * 3 + 0], 3);
352  // printf("A\n[ %3.2f %3.2f %3.2f ] %3.2f \n",A[0*3],A[1*3],A[2*3],R[0]);
353  // Y
354  A[1 + 3 * 0] =
355  cblas_ddot(4, &diffN[0 * 3 + 0], 3, &elem_coords[0 * 3 + 1], 3);
356  A[1 + 3 * 1] =
357  cblas_ddot(4, &diffN[0 * 3 + 1], 3, &elem_coords[0 * 3 + 1], 3);
358  A[1 + 3 * 2] =
359  cblas_ddot(4, &diffN[0 * 3 + 2], 3, &elem_coords[0 * 3 + 1], 3);
360  loc_coords[1] =
361  glob_coords[1] - cblas_ddot(4, &N[0], 1, &elem_coords[0 * 3 + 1], 3);
362  // printf("[ %3.2f %3.2f %3.2f ] %3.2f \n",A[1+3*0],A[1+3*1],A[1+3*2],R[1]);
363  // Z
364  A[2 + 3 * 0] =
365  cblas_ddot(4, &diffN[0 * 3 + 0], 3, &elem_coords[0 * 3 + 2], 3);
366  A[2 + 3 * 1] =
367  cblas_ddot(4, &diffN[0 * 3 + 1], 3, &elem_coords[0 * 3 + 2], 3);
368  A[2 + 3 * 2] =
369  cblas_ddot(4, &diffN[0 * 3 + 2], 3, &elem_coords[0 * 3 + 2], 3);
370  loc_coords[2] =
371  glob_coords[2] - cblas_ddot(4, &N[0], 1, &elem_coords[0 * 3 + 2], 3);
372  // printf("[ %3.2f %3.2f %3.2f ] %3.2f \n",A[2+3*0],A[2+3*1],A[2+3*2],R[1]);
373  int info =
374  lapack_dgesv(3, 1, &A[0], 3, (__CLPK_integer *)IPIV, loc_coords, 3);
375  if (info != 0)
376  SETERRQ1(PETSC_COMM_SELF, 1, "info == %d", info);
378 }
379 
380 PetscErrorCode ShapeMBTRI_inverse(double *N, double *diffN,
381  const double *elem_coords,
382  const double *glob_coords,
383  double *loc_coords) {
385  double A[2 * 2];
386 
387  // 1st and 2nd element of matrix A
388  A[0] = cblas_ddot(3, &diffN[0], 2, &elem_coords[0], 2); // dot product
389  A[1] = cblas_ddot(3, &diffN[1], 2, &elem_coords[0], 2);
390  loc_coords[0] = glob_coords[0] - cblas_ddot(3, &N[0], 1, &elem_coords[0], 2);
391 
392  // 3rd and 4th element of matrix A
393  A[2] = cblas_ddot(3, &diffN[0], 2, &elem_coords[1], 2);
394  A[3] = cblas_ddot(3, &diffN[1], 2, &elem_coords[1], 2);
395  loc_coords[1] = glob_coords[1] - cblas_ddot(3, &N[0], 1, &elem_coords[1], 2);
396 
397  // calculate directly the solution (as the size of matrix is only 2x2)
398  double invA[2 * 2], detA;
399  detA = A[0] * A[3] - A[1] * A[2];
400  detA = 1.0 / detA;
401  invA[0] = A[3] * detA;
402  invA[1] = -1.0 * A[1] * detA;
403  invA[2] = -1.0 * A[2] * detA;
404  invA[3] = A[0] * detA;
405 
406  double loc_coords_new[2];
407  loc_coords_new[0] = invA[0] * loc_coords[0] + invA[1] * loc_coords[1];
408  loc_coords_new[1] = invA[2] * loc_coords[0] + invA[3] * loc_coords[1];
409 
410  loc_coords[0] = loc_coords_new[0];
411  loc_coords[1] = loc_coords_new[1];
413 }
414 
415 PetscErrorCode ShapeDiffMBTETinvJ(double *diffN, double *invJac,
416  double *diffNinvJac) {
418  int ii = 0;
419  for (; ii < 4; ii++) {
420  cblas_dgemv(CblasRowMajor, CblasTrans, 3, 3, 1., invJac, 3, &diffN[ii * 3],
421  1, 0., &diffNinvJac[ii * 3], 1);
422  }
424 }
425 PetscErrorCode GradientOfDeformation(double *diffN, double *dofs, double *F) {
427  int col, row = 0;
428  for (; row < 3; row++)
429  for (col = 0; col < 3; col++) {
430  F[3 * row + col] = cblas_ddot(4, &diffN[col], 3, &dofs[row], 3);
431  }
433 }
434 
435 // Come functions with complex variables if one like to calculate derivative
436 // using complex variable
438  __CLPK_doublecomplex *diffNinvJac,
439  enum CBLAS_TRANSPOSE Trans) {
440  __CLPK_doublecomplex tmp1 = {1., 0.}, tmp2 = {0., 0.};
441  int ii = 0, jj;
442  for (; ii < 4; ii++) {
443  __CLPK_doublecomplex tmp3[3];
444  for (jj = 0; jj < 3; jj++) {
445  tmp3[jj].r = diffN[ii * 3 + jj];
446  tmp3[jj].i = 0;
447  }
448  cblas_zgemv(CblasRowMajor, Trans, 3, 3, &tmp1, invJac, 3, tmp3, 1, &tmp2,
449  &diffNinvJac[ii * 3], 1);
450  }
451 }
452 PetscErrorCode ShapeFaceNormalMBTRI_complex(double *diffN,
453  __CLPK_doublecomplex *xcoords,
454  __CLPK_doublecomplex *xnormal) {
456  double complex diffX_x, diffX_y, diffX_z;
457  double complex diffY_x, diffY_y, diffY_z;
458  diffX_x = diffX_y = diffX_z = 0.;
459  diffY_x = diffY_y = diffY_z = 0.;
460  int ii;
461  for (ii = 0; ii < 3; ii++) {
462  diffX_x +=
463  (xcoords[3 * ii + 0].r + I * xcoords[3 * ii + 0].i) * diffN[2 * ii + 0];
464  diffX_y +=
465  (xcoords[3 * ii + 1].r + I * xcoords[3 * ii + 1].i) * diffN[2 * ii + 0];
466  diffX_z +=
467  (xcoords[3 * ii + 2].r + I * xcoords[3 * ii + 2].i) * diffN[2 * ii + 0];
468  diffY_x +=
469  (xcoords[3 * ii + 0].r + I * xcoords[3 * ii + 0].i) * diffN[2 * ii + 1];
470  diffY_y +=
471  (xcoords[3 * ii + 1].r + I * xcoords[3 * ii + 1].i) * diffN[2 * ii + 1];
472  diffY_z +=
473  (xcoords[3 * ii + 2].r + I * xcoords[3 * ii + 2].i) * diffN[2 * ii + 1];
474  }
475  double complex tmp;
476  tmp = diffX_y * diffY_z - diffX_z * diffY_y;
477  xnormal[0].r = creal(tmp);
478  xnormal[0].i = cimag(tmp);
479  tmp = diffX_z * diffY_x - diffX_x * diffY_z;
480  xnormal[1].r = creal(tmp);
481  xnormal[1].i = cimag(tmp);
482  tmp = diffX_x * diffY_y - diffX_y * diffY_x;
483  xnormal[2].r = creal(tmp);
484  xnormal[2].i = cimag(tmp);
486 }
487 PetscErrorCode MakeComplexTensor(double *reA, double *imA,
488  __CLPK_doublecomplex *xA) {
490  int ii = 0, jj;
491  for (; ii < 3; ii++) {
492  for (jj = 0; jj < 3; jj++) {
493  xA[3 * ii + jj].r = reA[3 * ii + jj];
494  xA[3 * ii + jj].i = imA[3 * ii + jj];
495  }
496  }
498 }
501  __CLPK_integer IPIV[4];
502  __CLPK_doublecomplex WORK[4];
503  __CLPK_integer LWORK = 4;
504  __CLPK_integer info;
505  info = lapack_zgetrf(3, 3, xF, 3, IPIV);
506  if (info != 0)
507  SETERRQ(PETSC_COMM_SELF, 1, "info == 0");
508  info = lapack_zgetri(3, xF, 3, IPIV, WORK, LWORK);
509  if (info != 0)
510  SETERRQ(PETSC_COMM_SELF, 1, "info == 0");
512 }
515  __CLPK_integer info;
516  info = lapack_zpotrf('L', 3, xC, 3);
517  if (info == 0)
518  SETERRQ(PETSC_COMM_SELF, 1, "info == 0");
519  // assert(info == 0);
520  info = lapack_zpotri('L', 3, xC, 3);
521  if (info == 0)
522  SETERRQ(PETSC_COMM_SELF, 1, "info == 0");
523  // assert(info == 0);
525 }
527  __CLPK_doublecomplex *det_xF) {
529  __CLPK_integer IPIV[4];
530  if (lapack_zgetrf(3, 3, xF, 3, IPIV) != 0) {
531  SETERRQ(PETSC_COMM_SELF, 1, "lapack_zgetrf(3,3,xF,3,IPIV) != 0");
532  }
533  double complex det = 1;
534  int i = 0, j = 0;
535  for (; i < 3; i++) {
536  det *= xF[3 * i + i].r + I * xF[3 * i + i].i;
537  if (IPIV[i] != i + 1)
538  j++;
539  }
540  if ((j - (j / 2) * 2) != 0)
541  det = -det;
542  (*det_xF).r = creal(det);
543  (*det_xF).i = cimag(det);
545 }
546 PetscErrorCode Spin(double *spinOmega, double *vecOmega) {
548  bzero(spinOmega, 9 * sizeof(double));
549  spinOmega[0 * 3 + 1] = -vecOmega[2];
550  spinOmega[0 * 3 + 2] = +vecOmega[1];
551  spinOmega[1 * 3 + 0] = +vecOmega[2];
552  spinOmega[1 * 3 + 2] = -vecOmega[0];
553  spinOmega[2 * 3 + 0] = -vecOmega[1];
554  spinOmega[2 * 3 + 1] = +vecOmega[0];
556 }
557 PetscErrorCode make_complex_matrix(double *reA, double *imA,
558  __CLPK_doublecomplex *xA) {
560  int ii = 0, jj;
561  for (; ii < 3; ii++) {
562  for (jj = 0; jj < 3; jj++) {
563  xA[3 * ii + jj].r = reA[3 * ii + jj];
564  xA[3 * ii + jj].i = imA[3 * ii + jj];
565  }
566  }
568 }
569 PetscErrorCode Normal_hierarchical(
570  int order_approx, int *order_edge_approx, int order, int *order_edge,
571  double *diffN, double *diffN_face, double *diffN_edge[], double *dofs,
572  double *dofs_edge[], double *dofs_face, double *idofs, double *idofs_edge[],
573  double *idofs_face, __CLPK_doublecomplex *xnormal,
574  __CLPK_doublecomplex *xs1, __CLPK_doublecomplex *xs2, int gg) {
576  int nn, ee, dd;
577  // node
578  double complex diffX_x_node, diffX_y_node, diffX_z_node;
579  double complex diffY_x_node, diffY_y_node, diffY_z_node;
580  diffX_x_node = 0.;
581  diffX_y_node = 0.;
582  diffX_z_node = 0.;
583  diffY_x_node = 0.;
584  diffY_y_node = 0.;
585  diffY_z_node = 0.;
586  if (dofs != NULL || idofs != NULL) {
587  nn = 0;
588  for (; nn < 3; nn++) {
589  if (dofs != NULL) {
590  diffX_x_node += dofs[3 * nn + 0] * diffN[2 * nn + 0];
591  diffX_y_node += dofs[3 * nn + 1] * diffN[2 * nn + 0];
592  diffX_z_node += dofs[3 * nn + 2] * diffN[2 * nn + 0];
593  diffY_x_node += dofs[3 * nn + 0] * diffN[2 * nn + 1];
594  diffY_y_node += dofs[3 * nn + 1] * diffN[2 * nn + 1];
595  diffY_z_node += dofs[3 * nn + 2] * diffN[2 * nn + 1];
596  }
597  if (idofs != NULL) {
598  diffX_x_node += I * idofs[3 * nn + 0] * diffN[2 * nn + 0];
599  diffX_y_node += I * idofs[3 * nn + 1] * diffN[2 * nn + 0];
600  diffX_z_node += I * idofs[3 * nn + 2] * diffN[2 * nn + 0];
601  diffY_x_node += I * idofs[3 * nn + 0] * diffN[2 * nn + 1];
602  diffY_y_node += I * idofs[3 * nn + 1] * diffN[2 * nn + 1];
603  diffY_z_node += I * idofs[3 * nn + 2] * diffN[2 * nn + 1];
604  }
605  }
606  }
607  double complex diffX_x, diffX_y, diffX_z;
608  double complex diffY_x, diffY_y, diffY_z;
609  diffX_x = diffX_x_node;
610  diffX_y = diffX_y_node;
611  diffX_z = diffX_z_node;
612  diffY_x = diffY_x_node;
613  diffY_y = diffY_y_node;
614  diffY_z = diffY_z_node;
615  if (dofs_face != NULL || idofs_face != NULL) {
616  int nb_dofs_face = NBFACETRI_H1(order);
617  int nb_dofs_approx_face = NBFACETRI_H1(order_approx);
618  if (nb_dofs_face > 0) {
619  if (dofs_face != NULL) {
620  diffX_x += cblas_ddot(nb_dofs_face, &dofs_face[0], 3,
621  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
622  diffX_y += cblas_ddot(nb_dofs_face, &dofs_face[1], 3,
623  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
624  diffX_z += cblas_ddot(nb_dofs_face, &dofs_face[2], 3,
625  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
626  diffY_x += cblas_ddot(nb_dofs_face, &dofs_face[0], 3,
627  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
628  diffY_y += cblas_ddot(nb_dofs_face, &dofs_face[1], 3,
629  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
630  diffY_z += cblas_ddot(nb_dofs_face, &dofs_face[2], 3,
631  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
632  }
633  if (idofs_face != NULL) {
634  diffX_x +=
635  I * cblas_ddot(nb_dofs_face, &idofs_face[0], 3,
636  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
637  diffX_y +=
638  I * cblas_ddot(nb_dofs_face, &idofs_face[1], 3,
639  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
640  diffX_z +=
641  I * cblas_ddot(nb_dofs_face, &idofs_face[2], 3,
642  &diffN_face[gg * 2 * nb_dofs_approx_face + 0], 2);
643  diffY_x +=
644  I * cblas_ddot(nb_dofs_face, &idofs_face[0], 3,
645  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
646  diffY_y +=
647  I * cblas_ddot(nb_dofs_face, &idofs_face[1], 3,
648  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
649  diffY_z +=
650  I * cblas_ddot(nb_dofs_face, &idofs_face[2], 3,
651  &diffN_face[gg * 2 * nb_dofs_approx_face + 1], 2);
652  }
653  }
654  }
655  ee = 0;
656  if (dofs_edge != NULL || idofs_edge != NULL) {
657  for (; ee < 3; ee++) {
658  int nb_dofs_edge = NBEDGE_H1(order_edge[ee]);
659  int nb_dofs_approx_edge = NBEDGE_H1(order_edge_approx[ee]);
660  if (nb_dofs_edge > 0) {
661  if (dofs_edge != NULL) {
662  if (dofs_edge[ee] != NULL) {
663  diffX_x += cblas_ddot(
664  nb_dofs_edge, &(dofs_edge[ee])[0], 3,
665  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
666  diffX_y += cblas_ddot(
667  nb_dofs_edge, &(dofs_edge[ee])[1], 3,
668  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
669  diffX_z += cblas_ddot(
670  nb_dofs_edge, &(dofs_edge[ee])[2], 3,
671  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
672  diffY_x += cblas_ddot(
673  nb_dofs_edge, &(dofs_edge[ee])[0], 3,
674  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
675  diffY_y += cblas_ddot(
676  nb_dofs_edge, &(dofs_edge[ee])[1], 3,
677  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
678  diffY_z += cblas_ddot(
679  nb_dofs_edge, &(dofs_edge[ee])[2], 3,
680  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
681  }
682  }
683  if (idofs_edge != NULL) {
684  if (idofs_edge[ee] == NULL)
685  continue;
686  diffX_x +=
687  I * cblas_ddot(
688  nb_dofs_edge, &(idofs_edge[ee])[0], 3,
689  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
690  diffX_y +=
691  I * cblas_ddot(
692  nb_dofs_edge, &(idofs_edge[ee])[1], 3,
693  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
694  diffX_z +=
695  I * cblas_ddot(
696  nb_dofs_edge, &(idofs_edge[ee])[2], 3,
697  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 0], 2);
698  diffY_x +=
699  I * cblas_ddot(
700  nb_dofs_edge, &(idofs_edge[ee])[0], 3,
701  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
702  diffY_y +=
703  I * cblas_ddot(
704  nb_dofs_edge, &(idofs_edge[ee])[1], 3,
705  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
706  diffY_z +=
707  I * cblas_ddot(
708  nb_dofs_edge, &(idofs_edge[ee])[2], 3,
709  &(diffN_edge[ee])[gg * 2 * nb_dofs_approx_edge + 1], 2);
710  }
711  }
712  }
713  }
714  double complex normal[3];
715  normal[0] = diffX_y * diffY_z - diffX_z * diffY_y;
716  normal[1] = diffX_z * diffY_x - diffX_x * diffY_z;
717  normal[2] = diffX_x * diffY_y - diffX_y * diffY_x;
718  dd = 0;
719  for (; dd < 3; dd++) {
720  xnormal[dd].r = creal(normal[dd]);
721  xnormal[dd].i = cimag(normal[dd]);
722  }
723  if (xs1 != NULL) {
724  xs1[0].r = creal(diffX_x);
725  xs1[0].i = cimag(diffX_x);
726  xs1[1].r = creal(diffX_y);
727  xs1[1].i = cimag(diffX_y);
728  xs1[2].r = creal(diffX_z);
729  xs1[2].i = cimag(diffX_z);
730  }
731  if (xs2 != NULL) {
732  xs2[0].r = creal(diffY_x);
733  xs2[0].i = cimag(diffY_x);
734  xs2[1].r = creal(diffY_y);
735  xs2[1].i = cimag(diffY_y);
736  xs2[2].r = creal(diffY_z);
737  xs2[2].i = cimag(diffY_z);
738  }
740 }
741 PetscErrorCode Base_scale(__CLPK_doublecomplex *xnormal,
743  __CLPK_doublecomplex *xs2) {
745  complex double xnrm2_normal = csqrt(cpow(xnormal[0].r + I * xnormal[0].i, 2) +
746  cpow(xnormal[1].r + I * xnormal[1].i, 2) +
747  cpow(xnormal[2].r + I * xnormal[2].i, 2));
748  int dd = 0;
749  for (; dd < 3; dd++) {
750  complex double s1 = (xs1[dd].r + I * xs1[dd].i) * xnrm2_normal;
751  complex double s2 = (xs2[dd].r + I * xs2[dd].i) * xnrm2_normal;
752  xs1[dd].r = creal(s1);
753  xs1[dd].i = cimag(s1);
754  xs2[dd].r = creal(s2);
755  xs2[dd].i = cimag(s2);
756  }
758 }
759 
760 // MBEDGE
761 PetscErrorCode ShapeMBEDGE(double *N, const double *G_X, int DIM) {
763  int ii = 0;
764  for (; ii < DIM; ii++) {
765  double x = G_X[ii];
766  N[2 * ii + 0] = N_MBEDGE0(x);
767  N[2 * ii + 1] = N_MBEDGE1(x);
768  }
770 }
771 PetscErrorCode ShapeDiffMBEDGE(double *diffN) {
773  diffN[0] = diffN_MBEDGE0;
774  diffN[1] = diffN_MBEDGE1;
776 }
777 
778 // FIXME: NOT PROPERLY TESTED YET
779 // HO
780 PetscErrorCode ShapeMBTRIQ(double *N, const double *X, const double *Y,
781  const int G_DIM) {
783  int ii = 0;
784  for (; ii < G_DIM; ii++) {
785  double x = X[ii], y = Y[ii];
786  N[6 * ii + 0] = N_MBTRIQ0(x, y);
787  N[6 * ii + 1] = N_MBTRIQ1(x, y);
788  N[6 * ii + 2] = N_MBTRIQ2(x, y);
789  N[6 * ii + 3] = N_MBTRIQ3(x, y);
790  N[6 * ii + 4] = N_MBTRIQ4(x, y);
791  N[6 * ii + 5] = N_MBTRIQ5(x, y);
792  }
794 }
795 PetscErrorCode ShapeDiffMBTRIQ(double *diffN, const double *X, const double *Y,
796  const int G_DIM) {
798  int ii = 0;
799  for (; ii < G_DIM; ii++) {
800  double x = X[ii], y = Y[ii];
801  diffN[12 * ii + 0] = diffN_MBTRIQ0x(x, y);
802  diffN[12 * ii + 1] = diffN_MBTRIQ0y(x, y);
803  diffN[12 * ii + 2] = diffN_MBTRIQ1x(x, y);
804  diffN[12 * ii + 3] = diffN_MBTRIQ1y(x, y);
805  diffN[12 * ii + 4] = diffN_MBTRIQ2x(x, y);
806  diffN[12 * ii + 5] = diffN_MBTRIQ2y(x, y);
807  diffN[12 * ii + 6] = diffN_MBTRIQ3x(x, y);
808  diffN[12 * ii + 7] = diffN_MBTRIQ3y(x, y);
809  diffN[12 * ii + 8] = diffN_MBTRIQ4x(x, y);
810  diffN[12 * ii + 9] = diffN_MBTRIQ4y(x, y);
811  diffN[12 * ii + 10] = diffN_MBTRIQ5x(x, y);
812  diffN[12 * ii + 11] = diffN_MBTRIQ5y(x, y);
813  }
815 }
816 
817 // MBTETQ (JULIEN WORK)
818 #define N_MBTETQ0(x, y, z) ((2. * (1. - x - y - z) - 1.) * (1. - x - y - z))
819 #define N_MBTETQ1(x, y, z) ((2. * x - 1.) * x)
820 #define N_MBTETQ2(x, y, z) ((2. * y - 1.) * y)
821 #define N_MBTETQ3(x, y, z) ((2. * z - 1.) * z)
822 #define N_MBTETQ4(x, y, z) (4. * (1. - x - y - z) * x)
823 #define N_MBTETQ5(x, y, z) (4. * x * y)
824 #define N_MBTETQ6(x, y, z) (4. * (1. - x - y - z) * y)
825 #define N_MBTETQ7(x, y, z) (4. * (1. - x - y - z) * z)
826 #define N_MBTETQ8(x, y, z) (4. * x * z)
827 #define N_MBTETQ9(x, y, z) (4. * y * z)
828 #define diffN_MBTETQ0x(x, y, z) (-3. + 4. * x + 4. * y + 4. * z)
829 #define diffN_MBTETQ0y(x, y, z) (-3. + 4. * x + 4. * y + 4. * z)
830 #define diffN_MBTETQ0z(x, y, z) (-3. + 4. * x + 4. * y + 4. * z)
831 #define diffN_MBTETQ1x(x, y, z) (4. * x - 1.)
832 #define diffN_MBTETQ1y(x, y, z) (0.)
833 #define diffN_MBTETQ1z(x, y, z) (0.)
834 #define diffN_MBTETQ2x(x, y, z) (0.)
835 #define diffN_MBTETQ2y(x, y, z) (4. * y - 1.)
836 #define diffN_MBTETQ2z(x, y, z) (0.)
837 #define diffN_MBTETQ3x(x, y, z) (0.)
838 #define diffN_MBTETQ3y(x, y, z) (0.)
839 #define diffN_MBTETQ3z(x, y, z) (4. * z - 1.)
840 #define diffN_MBTETQ4x(x, y, z) (-8. * x + 4. - 4. * y - 4. * z)
841 #define diffN_MBTETQ4y(x, y, z) (-4. * x)
842 #define diffN_MBTETQ4z(x, y, z) (-4. * x)
843 #define diffN_MBTETQ5x(x, y, z) (4. * y)
844 #define diffN_MBTETQ5y(x, y, z) (4. * x)
845 #define diffN_MBTETQ5z(x, y, z) (0.)
846 #define diffN_MBTETQ6x(x, y, z) (-4. * y)
847 #define diffN_MBTETQ6y(x, y, z) (-8. * y + 4. - 4. * x - 4. * z)
848 #define diffN_MBTETQ6z(x, y, z) (-4. * y)
849 #define diffN_MBTETQ7x(x, y, z) (-4. * z)
850 #define diffN_MBTETQ7y(x, y, z) (-4. * z)
851 #define diffN_MBTETQ7z(x, y, z) (-8. * z + 4. - 4. * x - 4. * y)
852 #define diffN_MBTETQ8x(x, y, z) (4. * z)
853 #define diffN_MBTETQ8y(x, y, z) (0.)
854 #define diffN_MBTETQ8z(x, y, z) (4. * x)
855 #define diffN_MBTETQ9x(x, y, z) (0.)
856 #define diffN_MBTETQ9y(x, y, z) (4. * z)
857 #define diffN_MBTETQ9z(x, y, z) (4. * y)
858 PetscErrorCode ShapeMBTETQ(double *N, const double x, const double y,
859  const double z) {
861  N[0] = N_MBTETQ0(x, y, z);
862  N[1] = N_MBTETQ1(x, y, z);
863  N[2] = N_MBTETQ2(x, y, z);
864  N[3] = N_MBTETQ3(x, y, z);
865  N[4] = N_MBTETQ4(x, y, z);
866  N[5] = N_MBTETQ5(x, y, z);
867  N[6] = N_MBTETQ6(x, y, z);
868  N[7] = N_MBTETQ7(x, y, z);
869  N[8] = N_MBTETQ8(x, y, z);
870  N[9] = N_MBTETQ9(x, y, z);
872 }
873 PetscErrorCode ShapeDiffMBTETQ(double *diffN, const double x, const double y,
874  const double z) {
876  diffN[0] = diffN_MBTETQ0x(x, y, z);
877  diffN[1] = diffN_MBTETQ0y(x, y, z);
878  diffN[2] = diffN_MBTETQ0z(x, y, z);
879  diffN[3] = diffN_MBTETQ1x(x, y, z);
880  diffN[4] = diffN_MBTETQ1y(x, y, z);
881  diffN[5] = diffN_MBTETQ1z(x, y, z);
882  diffN[6] = diffN_MBTETQ2x(x, y, z);
883  diffN[7] = diffN_MBTETQ2y(x, y, z);
884  diffN[8] = diffN_MBTETQ2z(x, y, z);
885  diffN[9] = diffN_MBTETQ3x(x, y, z);
886  diffN[10] = diffN_MBTETQ3y(x, y, z);
887  diffN[11] = diffN_MBTETQ3z(x, y, z);
888  diffN[12] = diffN_MBTETQ4x(x, y, z);
889  diffN[13] = diffN_MBTETQ4y(x, y, z);
890  diffN[14] = diffN_MBTETQ4z(x, y, z);
891  diffN[15] = diffN_MBTETQ5x(x, y, z);
892  diffN[16] = diffN_MBTETQ5y(x, y, z);
893  diffN[17] = diffN_MBTETQ5z(x, y, z);
894  diffN[18] = diffN_MBTETQ6x(x, y, z);
895  diffN[19] = diffN_MBTETQ6y(x, y, z);
896  diffN[20] = diffN_MBTETQ6z(x, y, z);
897  diffN[21] = diffN_MBTETQ7x(x, y, z);
898  diffN[22] = diffN_MBTETQ7y(x, y, z);
899  diffN[23] = diffN_MBTETQ7z(x, y, z);
900  diffN[24] = diffN_MBTETQ8x(x, y, z);
901  diffN[25] = diffN_MBTETQ8y(x, y, z);
902  diffN[26] = diffN_MBTETQ8z(x, y, z);
903  diffN[27] = diffN_MBTETQ9x(x, y, z);
904  diffN[28] = diffN_MBTETQ9y(x, y, z);
905  diffN[29] = diffN_MBTETQ9z(x, y, z);
907 }
908 PetscErrorCode ShapeMBTETQ_GAUSS(double *N, const double *X, const double *Y,
909  const double *Z, const int G_DIM) {
911  int ii = 0;
912  for (; ii < G_DIM; ii++) {
913  double x = X[ii], y = Y[ii], z = Z[ii];
914  N[10 * ii + 0] = N_MBTETQ0(x, y, z);
915  N[10 * ii + 1] = N_MBTETQ1(x, y, z);
916  N[10 * ii + 2] = N_MBTETQ2(x, y, z);
917  N[10 * ii + 3] = N_MBTETQ3(x, y, z);
918  N[10 * ii + 4] = N_MBTETQ4(x, y, z);
919  N[10 * ii + 5] = N_MBTETQ5(x, y, z);
920  N[10 * ii + 6] = N_MBTETQ6(x, y, z);
921  N[10 * ii + 7] = N_MBTETQ7(x, y, z);
922  N[10 * ii + 8] = N_MBTETQ8(x, y, z);
923  N[10 * ii + 9] = N_MBTETQ9(x, y, z);
924  }
926 }
927 PetscErrorCode ShapeDiffMBTETQ_GAUSS(double *diffN, const double *X,
928  const double *Y, const double *Z,
929  const int G_DIM) {
931  int ii = 0;
932  for (; ii < G_DIM; ii++) {
933  double x = X[ii], y = Y[ii], z = Z[ii];
934  diffN[30 * ii + 0] = diffN_MBTETQ0x(x, y, z);
935  diffN[30 * ii + 1] = diffN_MBTETQ0y(x, y, z);
936  diffN[30 * ii + 2] = diffN_MBTETQ0z(x, y, z);
937  diffN[30 * ii + 3] = diffN_MBTETQ1x(x, y, z);
938  diffN[30 * ii + 4] = diffN_MBTETQ1y(x, y, z);
939  diffN[30 * ii + 5] = diffN_MBTETQ1z(x, y, z);
940  diffN[30 * ii + 6] = diffN_MBTETQ2x(x, y, z);
941  diffN[30 * ii + 7] = diffN_MBTETQ2y(x, y, z);
942  diffN[30 * ii + 8] = diffN_MBTETQ2z(x, y, z);
943  diffN[30 * ii + 9] = diffN_MBTETQ3x(x, y, z);
944  diffN[30 * ii + 10] = diffN_MBTETQ3y(x, y, z);
945  diffN[30 * ii + 11] = diffN_MBTETQ3z(x, y, z);
946  diffN[30 * ii + 12] = diffN_MBTETQ4x(x, y, z);
947  diffN[30 * ii + 13] = diffN_MBTETQ4y(x, y, z);
948  diffN[30 * ii + 14] = diffN_MBTETQ4z(x, y, z);
949  diffN[30 * ii + 15] = diffN_MBTETQ5x(x, y, z);
950  diffN[30 * ii + 16] = diffN_MBTETQ5y(x, y, z);
951  diffN[30 * ii + 17] = diffN_MBTETQ5z(x, y, z);
952  diffN[30 * ii + 18] = diffN_MBTETQ6x(x, y, z);
953  diffN[30 * ii + 19] = diffN_MBTETQ6y(x, y, z);
954  diffN[30 * ii + 20] = diffN_MBTETQ6z(x, y, z);
955  diffN[30 * ii + 21] = diffN_MBTETQ7x(x, y, z);
956  diffN[30 * ii + 22] = diffN_MBTETQ7y(x, y, z);
957  diffN[30 * ii + 23] = diffN_MBTETQ7z(x, y, z);
958  diffN[30 * ii + 24] = diffN_MBTETQ8x(x, y, z);
959  diffN[30 * ii + 25] = diffN_MBTETQ8y(x, y, z);
960  diffN[30 * ii + 26] = diffN_MBTETQ8z(x, y, z);
961  diffN[30 * ii + 27] = diffN_MBTETQ9x(x, y, z);
962  diffN[30 * ii + 28] = diffN_MBTETQ9y(x, y, z);
963  diffN[30 * ii + 29] = diffN_MBTETQ9z(x, y, z);
964  }
966 }
967 PetscErrorCode ShapeJacMBTETQ(const double *diffN, const double *coords,
968  double *Jac) {
970  int ii, jj, kk;
971  bzero(Jac, sizeof(double) * 9);
972  for (ii = 0; ii < 10; ii++) // shape func.
973  for (jj = 0; jj < 3; jj++) // space
974  for (kk = 0; kk < 3; kk++) // derivative of shape func.
975  Jac[jj * 3 + kk] += diffN[ii * 3 + kk] * coords[ii * 3 + jj];
977 }
978 PetscErrorCode
979 ShapeMBTETQ_detJac_at_Gauss_Points(double *detJac_at_Gauss_Points,
980  const double *diffN, const double *coords,
981  int G_DIM) {
983 
984  double Jac[9];
985  int ii = 0;
986  for (; ii < G_DIM; ii++) {
987  ierr = ShapeJacMBTETQ(&diffN[30 * ii], coords, Jac);
988  CHKERRQ(ierr);
989  detJac_at_Gauss_Points[ii] = ShapeDetJacVolume(Jac);
990  }
992 }
993 double ShapeVolumeMBTETQ(const double *diffN, const double *coords, int G_DIM,
994  double *G_TET_W) {
995 
996  int ii = 0;
997  double vol = 0;
998  double detJac_at_Gauss_Points[G_DIM];
999  ierr = ShapeMBTETQ_detJac_at_Gauss_Points(detJac_at_Gauss_Points, diffN,
1000  coords, G_DIM);
1001  CHKERRQ(ierr);
1002  for (; ii < G_DIM; ii++) {
1003  vol += G_TET_W[ii] * (detJac_at_Gauss_Points[ii]) / 6;
1004  }
1005  return vol;
1006 }
1007 PetscErrorCode ShapeMBTETQ_inverse(double *N, double *diffN,
1008  const double *elem_coords,
1009  const double *glob_coords,
1010  double *loc_coords, const double eps) {
1012  double A[3 * 3];
1013  double R[3];
1014  int IPIV[3];
1015  float NORM_dR = 1000.;
1016  float NORM_R0;
1017  ShapeMBTETQ(N, 0.1, 0.1, 0.1);
1018  ShapeDiffMBTETQ(diffN, 0.1, 0.1, 0.1);
1019  R[0] = glob_coords[0] - cblas_ddot(10, &N[0], 1, &elem_coords[0], 3);
1020  R[1] = glob_coords[1] - cblas_ddot(10, &N[0], 1, &elem_coords[1], 3);
1021  R[2] = glob_coords[2] - cblas_ddot(10, &N[0], 1, &elem_coords[2], 3);
1022  NORM_R0 = cblas_dnrm2(3, &R[0], 1);
1023  while ((NORM_dR / NORM_R0) > eps) {
1024  // COL MAJOR
1025  // X
1026  A[0 + 3 * 0] = cblas_ddot(10, &diffN[0 * 3 + 0], 3, &elem_coords[0], 3);
1027  A[0 + 3 * 1] = cblas_ddot(10, &diffN[0 * 3 + 1], 3, &elem_coords[0], 3);
1028  A[0 + 3 * 2] = cblas_ddot(10, &diffN[0 * 3 + 2], 3, &elem_coords[0], 3);
1029  R[0] = glob_coords[0] - cblas_ddot(10, &N[0], 1, &elem_coords[0], 3);
1030  // Y
1031  A[1 + 3 * 0] = cblas_ddot(10, &diffN[0 * 3 + 0], 3, &elem_coords[1], 3);
1032  A[1 + 3 * 1] = cblas_ddot(10, &diffN[0 * 3 + 1], 3, &elem_coords[1], 3);
1033  A[1 + 3 * 2] = cblas_ddot(10, &diffN[0 * 3 + 2], 3, &elem_coords[1], 3);
1034  R[1] = glob_coords[1] - cblas_ddot(10, &N[0], 1, &elem_coords[1], 3);
1035  // Z
1036  A[2 + 3 * 0] =
1037  cblas_ddot(10, &diffN[0 * 3 + 0], 3, &elem_coords[0 * 3 + 2], 3);
1038  A[2 + 3 * 1] =
1039  cblas_ddot(10, &diffN[0 * 3 + 1], 3, &elem_coords[0 * 3 + 2], 3);
1040  A[2 + 3 * 2] =
1041  cblas_ddot(10, &diffN[0 * 3 + 2], 3, &elem_coords[0 * 3 + 2], 3);
1042  R[2] = glob_coords[2] - cblas_ddot(10, &N[0], 1, &elem_coords[2], 3);
1043  int info = lapack_dgesv(3, 1, &A[0], 3, (__CLPK_integer *)IPIV, R, 3);
1044  assert(info == 0);
1045  NOT_USED(info);
1046  cblas_daxpy(3, 1., R, 1, loc_coords, 1);
1047  NORM_dR = cblas_dnrm2(3, &R[0], 1);
1048  ShapeMBTETQ(N, loc_coords[0], loc_coords[1], loc_coords[2]);
1049  ShapeDiffMBTETQ(diffN, loc_coords[0], loc_coords[1], loc_coords[2]);
1050  }
1052 }
MoFEMFunctionReturnHot
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:460
diffN_MBEDGE0
#define diffN_MBEDGE0
derivative of edge shape function
Definition: fem_tools.h:107
ShapeJacMBTET
PetscErrorCode ShapeJacMBTET(double *diffN, const double *coords, double *jac)
calculate jacobian
Definition: fem_tools.c:288
diffN_MBTETQ7z
#define diffN_MBTETQ7z(x, y, z)
Definition: fem_tools.c:851
diffN_MBTET3z
#define diffN_MBTET3z
derivative of tetrahedral shape function
Definition: fem_tools.h:43
diffN_MBTRI0y
#define diffN_MBTRI0y
derivative of triangle shape function
Definition: fem_tools.h:50
diffN_MBTETQ0z
#define diffN_MBTETQ0z(x, y, z)
Definition: fem_tools.c:830
N_MBTRIQ2
#define N_MBTRIQ2(x, y)
Definition: fem_tools.h:113
diffN_MBTETQ5y
#define diffN_MBTETQ5y(x, y, z)
Definition: fem_tools.c:844
lapack_zgetri
static __CLPK_integer lapack_zgetri(__CLPK_integer n, __CLPK_doublecomplex *a, __CLPK_integer lda, __CLPK_integer *ipiv, __CLPK_doublecomplex *work, __CLPK_integer lwork)
Definition: lapack_wrap.h:333
ierr
static PetscErrorCode ierr
Definition: fem_tools.c:20
NBEDGE_H1
#define NBEDGE_H1(P)
Numer of base function on edge for H1 space.
Definition: h1_hdiv_hcurl_l2.h:55
ShapeMBTETQ_GAUSS
PetscErrorCode ShapeMBTETQ_GAUSS(double *N, const double *X, const double *Y, const double *Z, const int G_DIM)
Definition: fem_tools.c:908
diffN_MBTRI2y
#define diffN_MBTRI2y
derivative of triangle shape function
Definition: fem_tools.h:54
diffN_MBTRIQ1y
#define diffN_MBTRIQ1y(x, y)
Definition: fem_tools.h:120
diffN_MBTETQ8x
#define diffN_MBTETQ8x(x, y, z)
Definition: fem_tools.c:852
lapack_dgetri
static __CLPK_integer lapack_dgetri(__CLPK_integer n, __CLPK_doublereal *a, __CLPK_integer lda, __CLPK_integer *ipiv, __CLPK_doublereal *work, __CLPK_integer lwork)
Definition: lapack_wrap.h:185
diffN_MBTETQ5z
#define diffN_MBTETQ5z(x, y, z)
Definition: fem_tools.c:845
InvertComplexGradient
PetscErrorCode InvertComplexGradient(__CLPK_doublecomplex *xF)
Definition: fem_tools.c:499
diffN_MBTETQ5x
#define diffN_MBTETQ5x(x, y, z)
Definition: fem_tools.c:843
N_MBTETQ6
#define N_MBTETQ6(x, y, z)
Definition: fem_tools.c:824
ShapeMBTETQ_detJac_at_Gauss_Points
PetscErrorCode ShapeMBTETQ_detJac_at_Gauss_Points(double *detJac_at_Gauss_Points, const double *diffN, const double *coords, int G_DIM)
Definition: fem_tools.c:979
lapack_dgesv
static __CLPK_integer lapack_dgesv(__CLPK_integer n, __CLPK_integer nrhs, __CLPK_doublereal *a, __CLPK_integer lda, __CLPK_integer *ipiv, __CLPK_doublereal *b, __CLPK_integer ldb)
Definition: lapack_wrap.h:176
diffN_MBTET2z
#define diffN_MBTET2z
derivative of tetrahedral shape function
Definition: fem_tools.h:40
__CLPK_doublecomplex::r
__CLPK_doublereal r
Definition: lapack_wrap.h:35
diffN_MBTETQ9x
#define diffN_MBTETQ9x(x, y, z)
Definition: fem_tools.c:855
ShapeDiffMBTRIQ
PetscErrorCode ShapeDiffMBTRIQ(double *diffN, const double *X, const double *Y, const int G_DIM)
Definition: fem_tools.c:795
diffN_MBTETQ0x
#define diffN_MBTETQ0x(x, y, z)
Definition: fem_tools.c:828
diffN_MBTET2y
#define diffN_MBTET2y
derivative of tetrahedral shape function
Definition: fem_tools.h:39
diffN_MBTETQ1z
#define diffN_MBTETQ1z(x, y, z)
Definition: fem_tools.c:833
A
constexpr AssemblyType A
Definition: operators_tests.cpp:30
diffN_MBTETQ1y
#define diffN_MBTETQ1y(x, y, z)
Definition: fem_tools.c:832
N_MBEDGE0
#define N_MBEDGE0(x)
edge shape function
Definition: fem_tools.h:105
N_MBTRIQ0
#define N_MBTRIQ0(x, y)
Definition: fem_tools.h:111
NOT_USED
#define NOT_USED(x)
Definition: definitions.h:255
diffN_MBTETQ9z
#define diffN_MBTETQ9z(x, y, z)
Definition: fem_tools.c:857
GradientOfDeformation
PetscErrorCode GradientOfDeformation(double *diffN, double *dofs, double *F)
calculate gradient of deformation
Definition: fem_tools.c:425
N_MBTETQ3
#define N_MBTETQ3(x, y, z)
Definition: fem_tools.c:821
G_TET_W1
static const double G_TET_W1[]
Definition: fem_tools.h:1115
N_MBTET0
#define N_MBTET0(x, y, z)
tetrahedral shape function
Definition: fem_tools.h:28
ShapeDiffMBTET
PetscErrorCode ShapeDiffMBTET(double *diffN)
calculate derivatives of shape functions
Definition: fem_tools.c:319
Normal_hierarchical
PetscErrorCode Normal_hierarchical(int order_approx, int *order_edge_approx, int order, int *order_edge, double *diffN, double *diffN_face, double *diffN_edge[], double *dofs, double *dofs_edge[], double *dofs_face, double *idofs, double *idofs_edge[], double *idofs_face, __CLPK_doublecomplex *xnormal, __CLPK_doublecomplex *xs1, __CLPK_doublecomplex *xs2, int gg)
Complex normal.
Definition: fem_tools.c:569
ShapeFaceBaseMBTRI
PetscErrorCode ShapeFaceBaseMBTRI(double *diffN, const double *coords, double *normal, double *s1, double *s2)
Definition: fem_tools.c:204
sdf.r
int r
Definition: sdf.py:8
diffN_MBTRIQ5y
#define diffN_MBTRIQ5y(x, y)
Definition: fem_tools.h:128
order
constexpr int order
Definition: dg_projection.cpp:18
ShapeMBTRI
PetscErrorCode ShapeMBTRI(double *N, const double *X, const double *Y, const int G_DIM)
calculate shape functions on triangle
Definition: fem_tools.c:182
N_MBTRIQ3
#define N_MBTRIQ3(x, y)
Definition: fem_tools.h:114
I
constexpr IntegrationType I
Definition: operators_tests.cpp:31
Grundmann_Moeller_integration_points_3D_TET
PetscErrorCode Grundmann_Moeller_integration_points_3D_TET(int rule, double *G_TET_X, double *G_TET_Y, double *G_TET_Z, double *G_TET_W)
Definition: fem_tools.c:143
diffN_MBTETQ0y
#define diffN_MBTETQ0y(x, y, z)
Definition: fem_tools.c:829
diffN_MBTRIQ0y
#define diffN_MBTRIQ0y(x, y)
Definition: fem_tools.h:118
diffN_MBTETQ8y
#define diffN_MBTETQ8y(x, y, z)
Definition: fem_tools.c:853
N_MBTRIQ4
#define N_MBTRIQ4(x, y)
Definition: fem_tools.h:115
N_MBTET3
#define N_MBTET3(x, y, z)
tetrahedral shape function
Definition: fem_tools.h:31
diffN_MBTETQ7x
#define diffN_MBTETQ7x(x, y, z)
Definition: fem_tools.c:849
gm_rule_size
int gm_rule_size(int rule, int dim_num)
Definition: gm_rule.c:294
N_MBTET2
#define N_MBTET2(x, y, z)
tetrahedral shape function
Definition: fem_tools.h:30
diffN_MBTRIQ3x
#define diffN_MBTRIQ3x(x, y)
Definition: fem_tools.h:123
diffN_MBTET2x
#define diffN_MBTET2x
derivative of tetrahedral shape function
Definition: fem_tools.h:38
gm_rule.h
N_MBTRIQ5
#define N_MBTRIQ5(x, y)
Definition: fem_tools.h:116
N_MBEDGE1
#define N_MBEDGE1(x)
edge shape function
Definition: fem_tools.h:106
N_MBTETQ9
#define N_MBTETQ9(x, y, z)
Definition: fem_tools.c:827
R
@ R
Definition: free_surface.cpp:394
diffN_MBTETQ6z
#define diffN_MBTETQ6z(x, y, z)
Definition: fem_tools.c:848
ShapeMBTETQ
PetscErrorCode ShapeMBTETQ(double *N, const double x, const double y, const double z)
Definition: fem_tools.c:858
double
ShapeDiffMBTETinvJ
PetscErrorCode ShapeDiffMBTETinvJ(double *diffN, double *invJac, double *diffNinvJac)
calculate shape functions derivatives in space
Definition: fem_tools.c:415
diffN_MBTRI0x
#define diffN_MBTRI0x
derivative of triangle shape function
Definition: fem_tools.h:49
diffN_MBTRIQ2y
#define diffN_MBTRIQ2y(x, y)
Definition: fem_tools.h:122
N_MBTETQ1
#define N_MBTETQ1(x, y, z)
Definition: fem_tools.c:819
Base_scale
PetscErrorCode Base_scale(__CLPK_doublecomplex *xnormal, __CLPK_doublecomplex *xs1, __CLPK_doublecomplex *xs2)
Definition: fem_tools.c:741
Grundmann_Moeller_integration_points_1D_EDGE
PetscErrorCode Grundmann_Moeller_integration_points_1D_EDGE(int rule, double *G_TRI_X, double *G_TRI_W)
Compute weights and integration points for edge using Grundmann_Moeller rule.
Definition: fem_tools.c:55
diffN_MBTETQ9y
#define diffN_MBTETQ9y(x, y, z)
Definition: fem_tools.c:856
N_MBTETQ2
#define N_MBTETQ2(x, y, z)
Definition: fem_tools.c:820
lapack_dgetrf
static __CLPK_integer lapack_dgetrf(__CLPK_integer m, __CLPK_integer n, __CLPK_doublereal *a, __CLPK_integer lda, __CLPK_integer *ipiv)
Definition: lapack_wrap.h:157
diffN_MBTRI2x
#define diffN_MBTRI2x
derivative of triangle shape function
Definition: fem_tools.h:53
diffN_MBTET3y
#define diffN_MBTET3y
derivative of tetrahedral shape function
Definition: fem_tools.h:42
ShapeInvJacVolume
PetscErrorCode ShapeInvJacVolume(double *jac)
Definition: fem_tools.c:39
diffN_MBTETQ3x
#define diffN_MBTETQ3x(x, y, z)
Definition: fem_tools.c:837
definitions.h
useful compiler derivatives and definitions
diffN_MBTETQ3y
#define diffN_MBTETQ3y(x, y, z)
Definition: fem_tools.c:838
ShapeMBEDGE
PetscErrorCode ShapeMBEDGE(double *N, const double *G_X, int DIM)
Definition: fem_tools.c:761
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
ShapeMBTETQ_inverse
PetscErrorCode ShapeMBTETQ_inverse(double *N, double *diffN, const double *elem_coords, const double *glob_coords, double *loc_coords, const double eps)
Definition: fem_tools.c:1007
diffN_MBTRIQ4x
#define diffN_MBTRIQ4x(x, y)
Definition: fem_tools.h:125
diffN_MBTETQ2x
#define diffN_MBTETQ2x(x, y, z)
Definition: fem_tools.c:834
diffN_MBTET1z
#define diffN_MBTET1z
derivative of tetrahedral shape function
Definition: fem_tools.h:37
ShapeFaceNormalMBTRI
PetscErrorCode ShapeFaceNormalMBTRI(double *diffN, const double *coords, double *normal)
Definition: fem_tools.c:229
diffN_MBTET0x
#define diffN_MBTET0x
derivative of tetrahedral shape function
Definition: fem_tools.h:32
diffN_MBEDGE1
#define diffN_MBEDGE1
derivative of edge shape function
Definition: fem_tools.h:108
N_MBTETQ4
#define N_MBTETQ4(x, y, z)
Definition: fem_tools.c:822
ShapeDetJacVolume
double ShapeDetJacVolume(double *jac)
determined of jacobian
Definition: fem_tools.c:22
diffN_MBTETQ8z
#define diffN_MBTETQ8z(x, y, z)
Definition: fem_tools.c:854
Grundmann_Moeller_integration_points_2D_TRI
PetscErrorCode Grundmann_Moeller_integration_points_2D_TRI(int rule, double *G_TRI_X, double *G_TRI_Y, double *G_TRI_W)
Definition: fem_tools.c:98
make_complex_matrix
PetscErrorCode make_complex_matrix(double *reA, double *imA, __CLPK_doublecomplex *xA)
Compose complex matrix (3x3) from two real matrices.
Definition: fem_tools.c:557
N_MBTRI0
#define N_MBTRI0(x, y)
triangle shape function
Definition: fem_tools.h:46
N
const int N
Definition: speed_test.cpp:3
diffN_MBTET0y
#define diffN_MBTET0y
derivative of tetrahedral shape function
Definition: fem_tools.h:33
ShapeDiffMBTETQ_GAUSS
PetscErrorCode ShapeDiffMBTETQ_GAUSS(double *diffN, const double *X, const double *Y, const double *Z, const int G_DIM)
Definition: fem_tools.c:927
diffN_MBTETQ4x
#define diffN_MBTETQ4x(x, y, z)
Definition: fem_tools.c:840
diffN_MBTET1x
#define diffN_MBTET1x
derivative of tetrahedral shape function
Definition: fem_tools.h:35
FTensor::dd
const Tensor2_symmetric_Expr< const ddTensor0< T, Dim, i, j >, typename promote< T, double >::V, Dim, i, j > dd(const Tensor0< T * > &a, const Index< i, Dim > index1, const Index< j, Dim > index2, const Tensor1< int, Dim > &d_ijk, const Tensor1< double, Dim > &d_xyz)
Definition: ddTensor0.hpp:33
NBFACETRI_H1
#define NBFACETRI_H1(P)
Number of base function on triangle for H1 space.
Definition: h1_hdiv_hcurl_l2.h:60
diffN_MBTRI1y
#define diffN_MBTRI1y
derivative of triangle shape function
Definition: fem_tools.h:52
diffN_MBTETQ3z
#define diffN_MBTETQ3z(x, y, z)
Definition: fem_tools.c:839
N_MBTET1
#define N_MBTET1(x, y, z)
tetrahedral shape function
Definition: fem_tools.h:29
diffN_MBTET1y
#define diffN_MBTET1y
derivative of tetrahedral shape function
Definition: fem_tools.h:36
diffN_MBTETQ7y
#define diffN_MBTETQ7y(x, y, z)
Definition: fem_tools.c:850
N_MBTETQ5
#define N_MBTETQ5(x, y, z)
Definition: fem_tools.c:823
lapack_zgetrf
static __CLPK_integer lapack_zgetrf(__CLPK_integer m, __CLPK_integer n, __CLPK_doublecomplex *a, __CLPK_integer lda, __CLPK_integer *ipiv)
Definition: lapack_wrap.h:323
diffN_MBTETQ4z
#define diffN_MBTETQ4z(x, y, z)
Definition: fem_tools.c:842
Spin
PetscErrorCode Spin(double *spinOmega, double *vecOmega)
calculate spin matrix from vector
Definition: fem_tools.c:546
diffN_MBTRIQ0x
#define diffN_MBTRIQ0x(x, y)
Definition: fem_tools.h:117
N_MBTRI1
#define N_MBTRI1(x, y)
triangle shape function
Definition: fem_tools.h:47
lapack_zpotri
static __CLPK_integer lapack_zpotri(char uplo, __CLPK_integer n, __CLPK_doublecomplex *a, __CLPK_integer lda)
Definition: lapack_wrap.h:341
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
eps
static const double eps
Definition: check_base_functions_derivatives_on_tet.cpp:11
diffN_MBTETQ2z
#define diffN_MBTETQ2z(x, y, z)
Definition: fem_tools.c:836
diffN_MBTETQ6x
#define diffN_MBTETQ6x(x, y, z)
Definition: fem_tools.c:846
fem_tools.h
Loose implementation of some useful functions.
diffN_MBTETQ4y
#define diffN_MBTETQ4y(x, y, z)
Definition: fem_tools.c:841
diffN_MBTRIQ2x
#define diffN_MBTRIQ2x(x, y)
Definition: fem_tools.h:121
h1_hdiv_hcurl_l2.h
Functions to approximate hierarchical spaces.
ShapeDiffMBEDGE
PetscErrorCode ShapeDiffMBEDGE(double *diffN)
Definition: fem_tools.c:771
diffN_MBTETQ1x
#define diffN_MBTETQ1x(x, y, z)
Definition: fem_tools.c:831
gm_rule_set
void gm_rule_set(int rule, int dim_num, int point_num, double w[], double x[])
Definition: gm_rule.c:152
diffN_MBTRIQ5x
#define diffN_MBTRIQ5x(x, y)
Definition: fem_tools.h:127
MakeComplexTensor
PetscErrorCode MakeComplexTensor(double *reA, double *imA, __CLPK_doublecomplex *xA)
Definition: fem_tools.c:487
ShapeMBTRIQ
PetscErrorCode ShapeMBTRIQ(double *N, const double *X, const double *Y, const int G_DIM)
Definition: fem_tools.c:780
diffN_MBTETQ6y
#define diffN_MBTETQ6y(x, y, z)
Definition: fem_tools.c:847
diffN_MBTRI1x
#define diffN_MBTRI1x
derivative of triangle shape function
Definition: fem_tools.h:51
ShapeDiffMBTRI
PetscErrorCode ShapeDiffMBTRI(double *diffN)
calculate derivatives of shape functions
Definition: fem_tools.c:194
N_MBTRIQ1
#define N_MBTRIQ1(x, y)
Definition: fem_tools.h:112
N_MBTETQ0
#define N_MBTETQ0(x, y, z)
Definition: fem_tools.c:818
InvertComplexSymmMatrix3by3
PetscErrorCode InvertComplexSymmMatrix3by3(__CLPK_doublecomplex *xC)
Definition: fem_tools.c:513
sdf_wavy_2d.w
int w
Definition: sdf_wavy_2d.py:6
ShapeVolumeMBTET
double ShapeVolumeMBTET(double *diffN, const double *coords)
calculate TET volume
Definition: fem_tools.c:298
MoFEMFunctionBeginHot
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:453
__CLPK_integer
long int __CLPK_integer
Definition: lapack_wrap.h:23
ShapeFaceNormalMBTRI_complex
PetscErrorCode ShapeFaceNormalMBTRI_complex(double *diffN, __CLPK_doublecomplex *xcoords, __CLPK_doublecomplex *xnormal)
Definition: fem_tools.c:452
diffN_MBTET0z
#define diffN_MBTET0z
derivative of tetrahedral shape function
Definition: fem_tools.h:34
ShapeDiffMBTETinvJ_complex
void ShapeDiffMBTETinvJ_complex(double *diffN, __CLPK_doublecomplex *invJac, __CLPK_doublecomplex *diffNinvJac, enum CBLAS_TRANSPOSE Trans)
Definition: fem_tools.c:437
N_MBTETQ7
#define N_MBTETQ7(x, y, z)
Definition: fem_tools.c:825
invJac
MatrixDouble invJac
Definition: HookeElement.hpp:683
diffN_MBTRIQ1x
#define diffN_MBTRIQ1x(x, y)
Definition: fem_tools.h:119
diffN_MBTRIQ4y
#define diffN_MBTRIQ4y(x, y)
Definition: fem_tools.h:126
__CLPK_doublecomplex::i
__CLPK_doublereal i
Definition: lapack_wrap.h:35
__CLPK_doublecomplex
Definition: lapack_wrap.h:34
N_MBTETQ8
#define N_MBTETQ8(x, y, z)
Definition: fem_tools.c:826
lapack_zpotrf
static __CLPK_integer lapack_zpotrf(char uplo, __CLPK_integer n, __CLPK_doublecomplex *a, __CLPK_integer lda)
Definition: lapack_wrap.h:348
ShapeMBTET
PetscErrorCode ShapeMBTET(double *N, const double *G_X, const double *G_Y, const double *G_Z, int DIM)
calculate shape functions
Definition: fem_tools.c:306
ShapeJacMBTETQ
PetscErrorCode ShapeJacMBTETQ(const double *diffN, const double *coords, double *Jac)
Definition: fem_tools.c:967
ShapeFaceDiffNormalMBTRI
PetscErrorCode ShapeFaceDiffNormalMBTRI(double *diffN, const double *coords, double *diff_normal)
calculate derivative of normal in respect to nodal positions
Definition: fem_tools.c:237
diffN_MBTETQ2y
#define diffN_MBTETQ2y(x, y, z)
Definition: fem_tools.c:835
ShapeDiffMBTETQ
PetscErrorCode ShapeDiffMBTETQ(double *diffN, const double x, const double y, const double z)
Definition: fem_tools.c:873
DeterminantComplexGradient
PetscErrorCode DeterminantComplexGradient(__CLPK_doublecomplex *xF, __CLPK_doublecomplex *det_xF)
Definition: fem_tools.c:526
ShapeVolumeMBTETQ
double ShapeVolumeMBTETQ(const double *diffN, const double *coords, int G_DIM, double *G_TET_W)
Definition: fem_tools.c:993
ShapeMBTET_inverse
PetscErrorCode ShapeMBTET_inverse(double *N, double *diffN, const double *elem_coords, const double *glob_coords, double *loc_coords)
calculate local coordinates for given global coordinates
Definition: fem_tools.c:335
diffN_MBTRIQ3y
#define diffN_MBTRIQ3y(x, y)
Definition: fem_tools.h:124
N_MBTRI2
#define N_MBTRI2(x, y)
triangle shape function
Definition: fem_tools.h:48
diffN_MBTET3x
#define diffN_MBTET3x
derivative of tetrahedral shape function
Definition: fem_tools.h:41
F
@ F
Definition: free_surface.cpp:394
ShapeMBTRI_inverse
PetscErrorCode ShapeMBTRI_inverse(double *N, double *diffN, const double *elem_coords, const double *glob_coords, double *loc_coords)
calculate local coordinates of triangle element for given global coordinates in 2D (Assume e....
Definition: fem_tools.c:380