964 {
966
970
971 const size_t nb_gauss_pts = AssemblyBoundaryEleOp::getGaussPts().size2();
972 auto &locMat = AssemblyBoundaryEleOp::locMat;
973
974 auto t_normal_at_pts = AssemblyBoundaryEleOp::getFTensor1NormalsAtGaussPts();
975 auto t_traction = getFTensor1FromMat<DIM>(
commonDataPtr->contactTraction);
976 auto t_coords = AssemblyBoundaryEleOp::getFTensor1CoordsAtGaussPts();
977
978 auto t_w = AssemblyBoundaryEleOp::getFTensor0IntegrationWeight();
979 auto t_row_base = row_data.getFTensor1N<3>();
980 size_t nb_face_functions = row_data.getN().size2() / 3;
981
983 BoundaryEleOp::getFTensor1CoordsAtGaussPts(),
984 getFTensor1FromMat<DIM>(
commonDataPtr->contactDisp), nb_gauss_pts);
986 BoundaryEleOp::getFTensor1NormalsAtGaussPts(), nb_gauss_pts);
987
988 auto t_normal = getFTensor1FromMat<3>(m_normals_at_pts);
989
990 auto ts_time = AssemblyBoundaryEleOp::getTStime();
991 auto ts_time_step = AssemblyBoundaryEleOp::getTStimeStep();
992
993
994 int block_id = 0;
995
996 auto v_sdf =
998 m_spatial_coords, m_normals_at_pts, block_id);
999
1000 auto m_grad_sdf =
1002 m_spatial_coords, m_normals_at_pts, block_id);
1003
1004 auto m_hess_sdf =
1006 m_spatial_coords, m_normals_at_pts, block_id);
1007
1008 auto t_sdf = getFTensor0FromVec(v_sdf);
1009 auto t_grad_sdf = getFTensor1FromMat<3>(m_grad_sdf);
1010 auto t_hess_sdf = getFTensor2SymmetricFromMat<3>(m_hess_sdf);
1011
1012 for (size_t gg = 0; gg != nb_gauss_pts; ++gg) {
1013
1014 double jacobian = 1.;
1016 jacobian = 2. * M_PI * t_coords(0);
1017 }
1018 const double alpha = t_w * jacobian * AssemblyBoundaryEleOp::getMeasure();
1019
1020 auto tn = -t_traction(
i) * t_grad_sdf(
i);
1022
1024 t_cP(
i,
j) = (
c * t_grad_sdf(
i)) * t_grad_sdf(
j);
1027
1030
1034 (t_hess_sdf(
i,
j) * (t_grad_sdf(
k) * t_traction(
k)) +
1035 t_grad_sdf(
i) * t_hess_sdf(
k,
j) * t_traction(
k)) +
1036 c * t_sdf * t_hess_sdf(
i,
j);
1037 }
1038
1039 size_t rr = 0;
1040 for (; rr != AssemblyBoundaryEleOp::nbRows / DIM; ++rr) {
1041
1042 auto t_mat = getFTensor2FromArray<DIM, DIM, DIM>(locMat, DIM * rr);
1043
1044 const double row_base = t_row_base(
i) * t_normal(
i);
1045
1046 auto t_col_base = col_data.getFTensor0N(gg, 0);
1047 for (size_t cc = 0; cc != AssemblyBoundaryEleOp::nbCols / DIM; ++cc) {
1048 const double beta = alpha * row_base * t_col_base;
1049
1050 t_mat(
i,
j) -= beta * t_res_dU(
i,
j);
1051
1052 ++t_col_base;
1053 ++t_mat;
1054 }
1055
1056 ++t_row_base;
1057 }
1058 for (; rr < nb_face_functions; ++rr)
1059 ++t_row_base;
1060
1061 ++t_traction;
1062 ++t_coords;
1063 ++t_w;
1064 ++t_normal;
1065 ++t_sdf;
1066 ++t_grad_sdf;
1067 ++t_hess_sdf;
1068 }
1069
1071}
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
Tensor2_Expr< Kronecker_Delta< T >, T, Dim0, Dim1, i, j > kronecker_delta(const Index< i, Dim0 > &, const Index< j, Dim1 > &)
Rank 2.