v0.15.0
Loading...
Searching...
No Matches
NeoHookean< TYPE > Struct Template Reference

NeoHookan equation. More...

#include "users_modules/basic_finite_elements/nonlinear_elastic_materials/src/NeoHookean.hpp"

Inheritance diagram for NeoHookean< TYPE >:
[legend]
Collaboration diagram for NeoHookean< TYPE >:
[legend]

Public Types

using PiolaKirchoffI
 

Public Member Functions

 NeoHookean ()
 
MoFEMErrorCode NeoHooke_PiolaKirchhoffII ()
 calculate second Piola Kirchhoff
 
virtual MoFEMErrorCode calculateP_PiolaKirchhoffI (const NonlinearElasticElement::BlockData block_data, boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr)
 Function overload to implement user material.
 
MoFEMErrorCode NeoHookean_ElasticEnergy ()
 calculate elastic energy density
 
MoFEMErrorCode calculateElasticEnergy (const NonlinearElasticElement::BlockData block_data, boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr)
 Calculate elastic energy density.
 
- Public Member Functions inherited from NonlinearElasticElement::FunctionsToCalculatePiolaKirchhoffI< TYPE >
 FunctionsToCalculatePiolaKirchhoffI ()
 
virtual ~FunctionsToCalculatePiolaKirchhoffI ()=default
 
MoFEMErrorCode calculateC_CauchyDeformationTensor ()
 
MoFEMErrorCode calculateE_GreenStrain ()
 
MoFEMErrorCode calculateS_PiolaKirchhoffII ()
 
virtual MoFEMErrorCode calculateCauchyStress (const BlockData block_data, boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr)
 Function overload to implement user material.
 
virtual MoFEMErrorCode setUserActiveVariables (int &nb_active_variables)
 add additional active variables
 
virtual MoFEMErrorCode setUserActiveVariables (VectorDouble &activeVariables)
 Add additional independent variables More complex physical models depend on gradient of defamation and some additional variables. For example can depend on temperature. This function adds additional independent variables to the model.
 
virtual MoFEMErrorCode calculatesIGma_EshelbyStress (const BlockData block_data, boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr)
 Calculate Eshelby stress.
 
virtual MoFEMErrorCode getDataOnPostProcessor (std::map< std::string, std::vector< VectorDouble > > &field_map, std::map< std::string, std::vector< MatrixDouble > > &grad_map)
 Do operations when pre-process.
 

Public Attributes

TYPE detC
 
TYPE logJ
 
MatrixBoundedArray< TYPE, 9 > invC
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_invC
 
FTensor::Index< 'i', 3 > i
 
FTensor::Index< 'j', 3 > j
 
FTensor::Index< 'k', 3 > k
 
- Public Attributes inherited from NonlinearElasticElement::FunctionsToCalculatePiolaKirchhoffI< TYPE >
FTensor::Index< 'i', 3 > i
 
FTensor::Index< 'j', 3 > j
 
FTensor::Index< 'k', 3 > k
 
double lambda
 
double mu
 
MatrixBoundedArray< TYPE, 9 > F
 
MatrixBoundedArray< TYPE, 9 > C
 
MatrixBoundedArray< TYPE, 9 > E
 
MatrixBoundedArray< TYPE, 9 > S
 
MatrixBoundedArray< TYPE, 9 > invF
 
MatrixBoundedArray< TYPE, 9 > P
 
MatrixBoundedArray< TYPE, 9 > sIGma
 
MatrixBoundedArray< TYPE, 9 > h
 
MatrixBoundedArray< TYPE, 9 > H
 
MatrixBoundedArray< TYPE, 9 > invH
 
MatrixBoundedArray< TYPE, 9 > sigmaCauchy
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_F
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_C
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_E
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_S
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_invF
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_P
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_sIGma
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_h
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_H
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_invH
 
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_sigmaCauchy
 
TYPE J
 
TYPE eNergy
 
TYPE detH
 
TYPE detF
 
int gG
 Gauss point number.
 
CommonDatacommonDataPtr
 
MoFEM::VolumeElementForcesAndSourcesCore::UserDataOperatoropPtr
 pointer to finite element tetrahedral operator
 

Additional Inherited Members

- Static Protected Member Functions inherited from NonlinearElasticElement::FunctionsToCalculatePiolaKirchhoffI< TYPE >
static auto resizeAndSet (MatrixBoundedArray< TYPE, 9 > &m)
 

Detailed Description

template<typename TYPE>
struct NeoHookean< TYPE >

NeoHookan equation.

Examples
NeoHookean.hpp.

Definition at line 16 of file NeoHookean.hpp.

Member Typedef Documentation

◆ PiolaKirchoffI

template<typename TYPE >
using NeoHookean< TYPE >::PiolaKirchoffI
Initial value:
Examples
NeoHookean.hpp.

Definition at line 20 of file NeoHookean.hpp.

Constructor & Destructor Documentation

◆ NeoHookean()

template<typename TYPE >
NeoHookean< TYPE >::NeoHookean ( )
inline
Examples
NeoHookean.hpp.

Definition at line 23 of file NeoHookean.hpp.

MatrixBoundedArray< TYPE, 9 > invC
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_invC

Member Function Documentation

◆ calculateElasticEnergy()

template<typename TYPE >
MoFEMErrorCode NeoHookean< TYPE >::calculateElasticEnergy ( const NonlinearElasticElement::BlockData block_data,
boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr )
inlinevirtual

Calculate elastic energy density.

\[\Psi = \frac{1}{2}\lambda(\textrm{tr}[\mathbf{E}])^2+\mu\mathbf{E}:\mathbf{E}\]

Reimplemented from NonlinearElasticElement::FunctionsToCalculatePiolaKirchhoffI< TYPE >.

Examples
NeoHookean.hpp.

Definition at line 94 of file NeoHookean.hpp.

96 {
98
99 this->lambda = LAMBDA(block_data.E, block_data.PoissonRatio);
100 this->mu = MU(block_data.E, block_data.PoissonRatio);
102 this->J = determinantTensor3by3(this->F);
104
106 }
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
#define MU(E, NU)
Definition fem_tools.h:23
#define LAMBDA(E, NU)
Definition fem_tools.h:22
MoFEMErrorCode determinantTensor3by3(T1 &t, T2 &det)
Calculate determinant 3 by 3.
MoFEMErrorCode NeoHookean_ElasticEnergy()
calculate elastic energy density

◆ calculateP_PiolaKirchhoffI()

template<typename TYPE >
virtual MoFEMErrorCode NeoHookean< TYPE >::calculateP_PiolaKirchhoffI ( const NonlinearElasticElement::BlockData block_data,
boost::shared_ptr< const NumeredEntFiniteElement > fe_ptr )
inlinevirtual

Function overload to implement user material.

Calculation of Piola Kirchhoff I is implemented by user. Tangent matrix user implemented physical equation is calculated using automatic differentiation.

\(\mathbf{S} = \lambda\textrm{tr}[\mathbf{E}]\mathbf{I}+2\mu\mathbf{E}\)

Notes:
Number of actual Gauss point is accessed from variable gG.
Access to operator data structures is available by variable opPtr.
Access to common data is by commonDataPtr.

Parameters
block_dataused to give access to material parameters
fe_ptrpointer to element data structures

For details look to:
NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, Javier Bonet, Richard D. Wood

Reimplemented from NonlinearElasticElement::FunctionsToCalculatePiolaKirchhoffI< TYPE >.

Examples
NeoHookean.hpp.

Definition at line 62 of file NeoHookean.hpp.

64 {
66
67 this->lambda = LAMBDA(block_data.E, block_data.PoissonRatio);
68 this->mu = MU(block_data.E, block_data.PoissonRatio);
71
72 this->t_P(i, j) = this->t_F(i, k) * this->t_S(k, j);
73
75 }
MoFEMErrorCode NeoHooke_PiolaKirchhoffII()
calculate second Piola Kirchhoff
FTensor::Index< 'i', 3 > i
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_F
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_P
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_S

◆ NeoHooke_PiolaKirchhoffII()

template<typename TYPE >
MoFEMErrorCode NeoHookean< TYPE >::NeoHooke_PiolaKirchhoffII ( )
inline

calculate second Piola Kirchhoff

\(\mathbf{S} = \mu(\mathbf{I}-\mathbf{C}^{-1})+\lambda(\ln{J})\mathbf{C}^{-1}\)

For details look to:
NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, Javier Bonet, Richard D. Wood

Examples
NeoHookean.hpp.

Definition at line 46 of file NeoHookean.hpp.

46 {
48
51 this->J = determinantTensor3by3(this->F);
52
53 logJ = log(sqrt(this->J * this->J));
54 constexpr auto t_kd = FTensor::Kronecker_Delta<double>();
55
56 this->t_S(i, j) = this->mu * (t_kd(i, j) - t_invC(i, j)) +
57 (this->lambda * logJ) * t_invC(i, j);
58
60 }
Kronecker Delta class.
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
constexpr auto t_kd
MoFEMErrorCode invertTensor3by3(ublas::matrix< T, L, A > &jac_data, ublas::vector< T, A > &det_data, ublas::matrix< T, L, A > &inv_jac_data)
Calculate inverse of tensor rank 2 at integration points.

◆ NeoHookean_ElasticEnergy()

template<typename TYPE >
MoFEMErrorCode NeoHookean< TYPE >::NeoHookean_ElasticEnergy ( )
inline

calculate elastic energy density

For details look to:
NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, Javier Bonet, Richard D. Wood

Examples
NeoHookean.hpp.

Definition at line 85 of file NeoHookean.hpp.

85 {
87 this->eNergy = this->t_C(i, i);
88 this->eNergy = 0.5 * this->mu * (this->eNergy - 3);
89 logJ = log(sqrt(this->J * this->J));
90 this->eNergy += -this->mu * logJ + 0.5 * this->lambda * pow(logJ, 2);
92 }
FTensor::Tensor2< FTensor::PackPtr< TYPE *, 0 >, 3, 3 > t_C

Member Data Documentation

◆ detC

template<typename TYPE >
TYPE NeoHookean< TYPE >::detC
Examples
NeoHookean.hpp.

Definition at line 27 of file NeoHookean.hpp.

◆ i

template<typename TYPE >
FTensor::Index<'i', 3> NeoHookean< TYPE >::i
Examples
NeoHookean.hpp.

Definition at line 32 of file NeoHookean.hpp.

◆ invC

template<typename TYPE >
MatrixBoundedArray<TYPE, 9> NeoHookean< TYPE >::invC
Examples
NeoHookean.hpp.

Definition at line 29 of file NeoHookean.hpp.

◆ j

template<typename TYPE >
FTensor::Index<'j', 3> NeoHookean< TYPE >::j
Examples
NeoHookean.hpp.

Definition at line 33 of file NeoHookean.hpp.

◆ k

template<typename TYPE >
FTensor::Index<'k', 3> NeoHookean< TYPE >::k
Examples
NeoHookean.hpp.

Definition at line 34 of file NeoHookean.hpp.

◆ logJ

template<typename TYPE >
TYPE NeoHookean< TYPE >::logJ
Examples
NeoHookean.hpp.

Definition at line 28 of file NeoHookean.hpp.

◆ t_invC

template<typename TYPE >
FTensor::Tensor2<FTensor::PackPtr<TYPE *, 0>, 3, 3> NeoHookean< TYPE >::t_invC
Examples
NeoHookean.hpp.

Definition at line 30 of file NeoHookean.hpp.


The documentation for this struct was generated from the following file: