Integrate the domain residual vector (RHS)
\[
\sum\limits_j {\left[ {\int\limits_{{\Omega _e}} {\left( {{a_n}\nabla {\phi _i}
\cdot \nabla {\phi _j} - a_n^3\nabla {\phi _i}\left( {\nabla u \cdot \nabla
{\phi _j}} \right)\nabla u} \right)d{\Omega _e}} } \right]\delta {U_j}} =
\int\limits_{{\Omega _e}} {{\phi _i}fd{\Omega _e}} - \int\limits_{{\Omega _e}}
{\nabla {\phi _i}{a_n}\nabla ud{\Omega _e}} \\
{a_n} = \frac{1}{{{{\left( {1 +
{{\left| {\nabla u} \right|}^2}} \right)}^{\frac{1}{2}}}}}
\]
Definition at line 118 of file minimal_surface_equation.cpp.