v0.14.0
AnalyticalFun.hpp
Go to the documentation of this file.
1 /* This file is part of MoFEM.
2  * MoFEM is free software: you can redistribute it and/or modify it under
3  * the terms of the GNU Lesser General Public License as published by the
4  * Free Software Foundation, either version 3 of the License, or (at your
5  * option) any later version.
6  *
7  * MoFEM is distributed in the hope that it will be useful, but WITHOUT
8  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
9  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
10  * License for more details.
11  *
12  * You should have received a copy of the GNU Lesser General Public
13  * License along with MoFEM. If not, see <http://www.gnu.org/licenses/>. */
14 
15 namespace FractureMechanics {
16 
18  double aLpha;
20  PetscErrorCode getOptions() {
21 
23  ierr =
24  PetscOptionsBegin(PETSC_COMM_WORLD, "",
25  "Get analytical boundary conditions options", "none");
26  CHKERRQ(ierr);
27  ierr = PetscOptionsScalar("-analytical_alpha", "crack angle", "", aLpha,
28  &aLpha, PETSC_NULL);
29  CHKERRQ(ierr);
30  PetscBool flg;
31  double fraction = 1;
32  ierr = PetscOptionsScalar(
33  "-analytical_alpha_fraction_pi",
34  "crack angle given as fraction of Pi aLpha = M_PI/fraction", "",
35  fraction, &fraction, &flg);
36  CHKERRQ(ierr);
37  if (flg == PETSC_TRUE) {
38  aLpha = M_PI / fraction;
39  }
40  ierr = PetscOptionsEnd();
41  CHKERRQ(ierr);
42  optionsInitialised = true;
44  }
46 };
47 
48 #ifndef __ANALITICAL_TRACTION__
49 #define __ANALITICAL_TRACTION__
50 
52  public AnalyticalOptions {
53 
54  PetscErrorCode getForce(const EntityHandle ent, const VectorDouble3 &coords,
55  const VectorDouble3 &normal, VectorDouble3 &forces) {
56 
58 
59  // initailise options
60  if (!optionsInitialised) {
61  ierr = getOptions();
62  CHKERRQ(ierr);
63  }
64 
65  const double x = coords[0];
66  const double y = coords[1];
67  const double z = coords[2];
68  double &fx = forces[0];
69  double &fy = forces[1];
70  double &fz = forces[2];
71 
72  const double n0 = normal[0] / sqrt(pow(normal[0], 2) + pow(normal[1], 2) +
73  pow(normal[2], 2));
74  const double n1 = normal[1] / sqrt(pow(normal[0], 2) + pow(normal[1], 2) +
75  pow(normal[2], 2));
76  const double n2 = normal[2] / sqrt(pow(normal[0], 2) + pow(normal[1], 2) +
77  pow(normal[2], 2));
78 
79  const double pi = M_PI;
80  const double alpha = aLpha;
81  const double theta = atan2(z, x * sin(alpha) + y * cos(alpha));
82 
83  const double rxy =
84  sqrt(pow(x * sin(alpha) + y * cos(alpha), 2) + pow(z, 2));
85  const double sref1 = 1 / sqrt(2 * pi * rxy) * cos(theta / 2.) *
86  (1. - sin(theta / 2.) * sin(3. * theta / 2.));
87  const double sref2 = 1 / sqrt(2 * pi * rxy) * cos(theta / 2.) *
88  (1. + sin(theta / 2.) * sin(3. * theta / 2.));
89  const double sref3 = 1 / sqrt(2 * pi * rxy) * sin(theta / 2.) *
90  cos(theta / 2.) * cos(3. * theta / 2.);
91 
92  const double scal1 = sref1 * pow(sin(alpha), 2);
93  const double scal2 = sref1 * pow(cos(alpha), 2);
94  const double scal3 = sref2;
95  const double scal4 = sref1 * sin(alpha) * cos(alpha);
96  const double scal5 = sref3 * sin(alpha);
97  const double scal6 = sref3 * cos(alpha);
98 
99  // This is just example
100  fx = scal1 * n0 + scal4 * n1 + scal5 * n2;
101  fy = scal4 * n0 + scal2 * n1 + scal6 * n2;
102  fz = scal5 * n0 + scal6 * n1 + scal3 * n2;
103 
104  fx *= -1;
105  fy *= -1;
106  fz *= -1;
107 
109  }
110 };
111 
112 #endif //__ANALITICAL_TRACTION__
113 
114 #ifndef __ANALITICAL_DISPLACEMENT__
115 #define __ANALITICAL_DISPLACEMENT__
116 
118 
119  vector<VectorDouble> dIsp;
120 
121  virtual vector<VectorDouble> &operator()(const double X, const double Y,
122  const double Z) {
123 
124  // initailise options
125  if (!optionsInitialised) {
126  getOptions();
127  }
128 
129  dIsp.resize(1);
130  dIsp[0].resize(3);
131 
132  double &x = dIsp[0][0];
133  double &y = dIsp[0][1];
134  double &z = dIsp[0][2];
135 
136  // Current positions is given by
137 
138  const double E = 1.0e5;
139  const double nu = 0;
140  const double pi = M_PI;
141  const double alpha = aLpha;
142 
143  const double theta = atan2(Z, X * sin(alpha) + Y * cos(alpha));
144 
145  const double ux =
146  (1 + nu) / E *
147  sqrt(sqrt(pow(X * sin(alpha) + Y * cos(alpha), 2) + pow(Z, 2)) /
148  (2 * pi)) *
149  cos(theta / 2.) * (3 - 4 * nu - cos(theta)) *
150  sin(alpha); // simply ux = f(Z) = Z*1e-3
151  const double uy =
152  (1 + nu) / E *
153  sqrt(sqrt(pow(X * sin(alpha) + Y * cos(alpha), 2) + pow(Z, 2)) /
154  (2 * pi)) *
155  cos(theta / 2.) * (3 - 4 * nu - cos(theta)) * cos(alpha);
156  const double uz =
157  (1 + nu) / E *
158  sqrt(sqrt(pow(X * sin(alpha) + Y * cos(alpha), 2) + pow(Z, 2)) /
159  (2 * pi)) *
160  sin(theta / 2.) * (3 - 4 * nu - cos(theta));
161 
162  x = X + ux;
163  y = Y + uy;
164  z = Z + uz;
165 
166  return dIsp;
167  }
168 
169 };
170 
171 // struct AnalyticalForces: public NeumannForcesSurface::MethodForAnalyticalForce {
172 //
173 // PetscErrorCode getForce(
174 // const EntityHandle ent,
175 // const VectorDouble3 &coords,
176 // const VectorDouble3 &normal,
177 // VectorDouble3 &forces
178 // ) {
179 // MoFEMFunctionBeginHot;
180 //
181 // const double x = coords[0];
182 // const double y = coords[1];
183 // const double z = coords[2];
184 // double &fx = forces[0];
185 // double &fy = forces[1];
186 // double &fz = forces[2];
187 //
188 // // This is just example
189 // fx = z*1000;
190 // fy = 0;
191 // fz = 0;
192 //
193 // // cerr << forces << endl;
194 //
195 // MoFEMFunctionReturnHot(0);
196 // }
197 //
198 // };
199 //
200 // #endif //__ANALITICAL_TRACTION__
201 //
202 // #ifndef __ANALITICAL_DISPLACEMENT__
203 // #define __ANALITICAL_DISPLACEMENT__
204 //
205 // struct AnalyticalDisp {
206 //
207 // vector<VectorDouble > dIsp;
208 //
209 // virtual vector<VectorDouble >& operator()(
210 // const double X, const double Y, const double Z
211 // ) {
212 //
213 // dIsp.resize(1);
214 // dIsp[0].resize(3);
215 //
216 // double &x = dIsp[0][0];
217 // double &y = dIsp[0][1];
218 // double &z = dIsp[0][2];
219 //
220 // // Current positions is given by
221 //
222 // const double ux = Z*1e-3; // simply ux = f(Z) = Z*1e-3
223 // const double uy = 0;
224 // const double uz = 0;
225 //
226 // x = X+ux;
227 // y = Y+uy;
228 // z = Z+uz;
229 //
230 // return dIsp;
231 //
232 // }
233 //
234 // };
235 
236 }
237 
238 #endif //__ANALITICAL_DISPLACEMENT__
MoFEMFunctionReturnHot
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:460
FractureMechanics::AnalyticalOptions::aLpha
double aLpha
Definition: AnalyticalFun.hpp:18
MoFEM::Types::VectorDouble3
VectorBoundedArray< double, 3 > VectorDouble3
Definition: Types.hpp:92
EntityHandle
E
FractureMechanics::AnalyticalOptions::AnalyticalOptions
AnalyticalOptions()
Definition: AnalyticalFun.hpp:45
FractureMechanics::AnalyticalDisp::operator()
virtual vector< VectorDouble > & operator()(const double X, const double Y, const double Z)
Definition: AnalyticalFun.hpp:121
ClipperLib::pi
static const double pi
Definition: clipper.cpp:89
NeumannForcesSurface::MethodForAnalyticalForce
Analytical force method.
Definition: SurfacePressure.hpp:21
FractureMechanics::AnalyticalOptions::getOptions
PetscErrorCode getOptions()
Definition: AnalyticalFun.hpp:20
FractureMechanics::AnalyticalDisp::dIsp
vector< VectorDouble > dIsp
Definition: AnalyticalFun.hpp:119
FractureMechanics::AnalyticalDisp
Definition: AnalyticalFun.hpp:117
FractureMechanics::AnalyticalOptions::optionsInitialised
bool optionsInitialised
Definition: AnalyticalFun.hpp:19
FractureMechanics::AnalyticalOptions
Definition: AnalyticalFun.hpp:17
FractureMechanics::AnalyticalForces::getForce
PetscErrorCode getForce(const EntityHandle ent, const VectorDouble3 &coords, const VectorDouble3 &normal, VectorDouble3 &forces)
Definition: AnalyticalFun.hpp:54
MoFEM::Exceptions::ierr
static MoFEMErrorCodeGeneric< PetscErrorCode > ierr
Definition: Exceptions.hpp:76
MoFEMFunctionBeginHot
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:453
FractureMechanics::AnalyticalForces
Definition: AnalyticalFun.hpp:51
FractureMechanics
Definition: AnalyticalFun.hpp:15