v0.14.0 |
Computes, for material configuration, normal to slave face that is common to all gauss points. More...
#include <users_modules/mortar_contact/src/SimpleContact.hpp>
Public Member Functions | |
OpGetNormalSlaveALE (const string field_name, boost::shared_ptr< CommonDataSimpleContact > common_data_contact) | |
MoFEMErrorCode | doWork (int side, EntityType type, EntData &data) |
Evaluates unit normal vector to the slave surface vector based on material base coordinates. More... | |
Public Attributes | |
boost::shared_ptr< CommonDataSimpleContact > | commonDataSimpleContact |
Computes, for material configuration, normal to slave face that is common to all gauss points.
Definition at line 2645 of file SimpleContact.hpp.
|
inline |
Definition at line 2648 of file SimpleContact.hpp.
MoFEMErrorCode SimpleContactProblem::OpGetNormalSlaveALE::doWork | ( | int | side, |
EntityType | type, | ||
EntData & | data | ||
) |
Evaluates unit normal vector to the slave surface vector based on material base coordinates.
Computes normal vector based on material base coordinates based on mesh (moab vertices) coordinates:
\[ {\mathbf N}^{(1)}({\mathbf X}^{(1)}(\xi, \eta)) = \frac{\partial\mathbf{X}^{(1)}(\xi, \eta)}{\partial\xi}\times\frac{\partial \mathbf{X}^{(1)}(\xi, \eta)} {\partial\eta} \]
where \({\mathbf X}^{(1)}(\xi, \eta)\) is the vector of material coordinates at the gauss point on slave surface with parent coordinates \(\xi\) and \(\eta\) evaluated according to
\[ {\mathbf X}^{(1)}(\xi, \eta) = \sum\limits^{3}_{i = 1} N_i(\xi, \eta){\overline{\mathbf X}}^{(1)}_i \]
where \( N_i \) is the shape function corresponding to the \( i-{\rm{th}}\) degree of freedom in the material configuration \({\overline{\mathbf X}}^{(1)}_i\) corresponding to the 3 nodes of the triangular slave face.
Definition at line 3337 of file SimpleContact.cpp.
boost::shared_ptr<CommonDataSimpleContact> SimpleContactProblem::OpGetNormalSlaveALE::commonDataSimpleContact |
Definition at line 2647 of file SimpleContact.hpp.