v0.15.0
Loading...
Searching...
No Matches
Macros | Functions
base_functions.h File Reference

Go to the source code of this file.

Macros

#define LOBATTO_PHI0(x)   (-2.0 * 1.22474487139158904909864203735)
 Definitions taken from Hermes2d code.
 
#define LOBATTO_PHI1(x)   (-2.0 * 1.58113883008418966599944677222 * (x))
 
#define LOBATTO_PHI2(x)    (-1.0 / 2.0 * 1.87082869338697069279187436616 * (5 * (x) * (x)-1))
 
#define LOBATTO_PHI3(x)    (-1.0 / 2.0 * 2.12132034355964257320253308631 * (7 * (x) * (x)-3) * (x))
 
#define LOBATTO_PHI4(x)
 
#define LOBATTO_PHI5(x)
 
#define LOBATTO_PHI6(x)
 
#define LOBATTO_PHI7(x)
 
#define LOBATTO_PHI8(x)
 
#define LOBATTO_PHI9(x)
 
#define LOBATTO_PHI0X(x)   (0)
 Derivatives of kernel functions for Lobbatto base.
 
#define LOBATTO_PHI1X(x)   (-2.0 * 1.58113883008418966599944677222)
 
#define LOBATTO_PHI2X(x)    (-1.0 / 2.0 * 1.87082869338697069279187436616 * (10 * (x)))
 
#define LOBATTO_PHI3X(x)    (-1.0 / 2.0 * 2.12132034355964257320253308631 * (21.0 * (x) * (x)-3.0))
 
#define LOBATTO_PHI4X(x)
 
#define LOBATTO_PHI5X(x)
 
#define LOBATTO_PHI6X(x)
 
#define LOBATTO_PHI7X(x)
 
#define LOBATTO_PHI8X(x)
 
#define LOBATTO_PHI9X(x)
 

Functions

PetscErrorCode Jacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
 Calculate Jacobi approximation basis.
 
PetscErrorCode IntegratedJacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
 Calculate integrated Jacobi approximation basis.
 
PetscErrorCode LobattoKernel_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim)
 Calculate Kernel Lobatto base functions.
 

Macro Definition Documentation

◆ LOBATTO_PHI0

#define LOBATTO_PHI0 (   x)    (-2.0 * 1.22474487139158904909864203735)

Definitions taken from Hermes2d code.

kernel functions for Lobatto base

Definition at line 81 of file base_functions.h.

◆ LOBATTO_PHI0X

#define LOBATTO_PHI0X (   x)    (0)

Derivatives of kernel functions for Lobbatto base.

Definition at line 112 of file base_functions.h.

◆ LOBATTO_PHI1

#define LOBATTO_PHI1 (   x)    (-2.0 * 1.58113883008418966599944677222 * (x))

Definition at line 82 of file base_functions.h.

◆ LOBATTO_PHI1X

#define LOBATTO_PHI1X (   x)    (-2.0 * 1.58113883008418966599944677222)

Definition at line 113 of file base_functions.h.

◆ LOBATTO_PHI2

#define LOBATTO_PHI2 (   x)     (-1.0 / 2.0 * 1.87082869338697069279187436616 * (5 * (x) * (x)-1))

Definition at line 83 of file base_functions.h.

◆ LOBATTO_PHI2X

#define LOBATTO_PHI2X (   x)     (-1.0 / 2.0 * 1.87082869338697069279187436616 * (10 * (x)))

Definition at line 114 of file base_functions.h.

◆ LOBATTO_PHI3

#define LOBATTO_PHI3 (   x)     (-1.0 / 2.0 * 2.12132034355964257320253308631 * (7 * (x) * (x)-3) * (x))

Definition at line 85 of file base_functions.h.

◆ LOBATTO_PHI3X

#define LOBATTO_PHI3X (   x)     (-1.0 / 2.0 * 2.12132034355964257320253308631 * (21.0 * (x) * (x)-3.0))

Definition at line 116 of file base_functions.h.

◆ LOBATTO_PHI4

#define LOBATTO_PHI4 (   x)
Value:
(-1.0 / 4.0 * 2.34520787991171477728281505677 * \
(21 * (x) * (x) * (x) * (x)-14 * (x) * (x) + 1))

Definition at line 87 of file base_functions.h.

◆ LOBATTO_PHI4X

#define LOBATTO_PHI4X (   x)
Value:
(-1.0 / 4.0 * 2.34520787991171477728281505677 * \
((84.0 * (x) * (x)-28.0) * (x)))

Definition at line 118 of file base_functions.h.

◆ LOBATTO_PHI5

#define LOBATTO_PHI5 (   x)
Value:
(-1.0 / 4.0 * 2.54950975679639241501411205451 * \
((33 * (x) * (x)-30) * (x) * (x) + 5) * (x))

Definition at line 90 of file base_functions.h.

◆ LOBATTO_PHI5X

#define LOBATTO_PHI5X (   x)
Value:
(-1.0 / 4.0 * 2.54950975679639241501411205451 * \
((165.0 * (x) * (x)-90.0) * (x) * (x) + 5.0))

Definition at line 121 of file base_functions.h.

◆ LOBATTO_PHI6

#define LOBATTO_PHI6 (   x)
Value:
(-1.0 / 32.0 * 2.73861278752583056728484891400 * \
(((429 * (x) * (x)-495) * (x) * (x) + 135) * (x) * (x)-5))

Definition at line 93 of file base_functions.h.

◆ LOBATTO_PHI6X

#define LOBATTO_PHI6X (   x)
Value:
(-1.0 / 32.0 * 2.73861278752583056728484891400 * \
(((2574.0 * (x) * (x)-1980.0) * (x) * (x) + 270.0) * (x)))

Definition at line 124 of file base_functions.h.

◆ LOBATTO_PHI7

#define LOBATTO_PHI7 (   x)
Value:
(-1.0 / 32.0 * 2.91547594742265023543707643877 * \
(((715 * (x) * (x)-1001) * (x) * (x) + 385) * (x) * (x)-35) * (x))

Definition at line 96 of file base_functions.h.

◆ LOBATTO_PHI7X

#define LOBATTO_PHI7X (   x)
Value:
(-1.0 / 32.0 * 2.91547594742265023543707643877 * \
(((5005.0 * (x) * (x)-5005.0) * (x) * (x) + 1155.0) * (x) * (x)-35.0))

Definition at line 127 of file base_functions.h.

◆ LOBATTO_PHI8

#define LOBATTO_PHI8 (   x)
Value:
(-1.0 / 64.0 * 3.08220700148448822512509619073 * \
((((2431 * (x) * (x)-4004) * (x) * (x) + 2002) * (x) * (x)-308) * (x) * \
(x) + \
7))

Definition at line 99 of file base_functions.h.

◆ LOBATTO_PHI8X

#define LOBATTO_PHI8X (   x)
Value:
(-1.0 / 64.0 * 3.08220700148448822512509619073 * \
((((19448.0 * (x) * (x)-24024.0) * (x) * (x) + 8008.0) * (x) * (x)-616.0) * \
(x)))

Definition at line 130 of file base_functions.h.

◆ LOBATTO_PHI9

#define LOBATTO_PHI9 (   x)
Value:
(-1.0 / 128.0 * 6.4807406984078603784382721642 * \
((((4199 * (x) * (x)-7956) * (x) * (x) + 4914) * (x) * (x)-1092) * (x) * \
(x) + \
63) * \
(x))

Definition at line 104 of file base_functions.h.

◆ LOBATTO_PHI9X

#define LOBATTO_PHI9X (   x)
Value:
(-1.0 / 128.0 * 6.4807406984078603784382721642 * \
((((37791.0 * (x) * (x)-55692.0) * (x) * (x) + 24570.0) * (x) * \
(x)-3276.0) * \
(x) * (x)-63.0))

Definition at line 134 of file base_functions.h.

Function Documentation

◆ IntegratedJacobi_polynomials()

PetscErrorCode IntegratedJacobi_polynomials ( int  p,
double  alpha,
double  x,
double  t,
double diff_x,
double diff_t,
double L,
double diffL,
const int  dim 
)

Calculate integrated Jacobi approximation basis.

For more details see [25]

Parameters
pis approximation order
alphapolynomial parameter
xis position \(s\in[0,t]\)
trange of polynomial
diff_xderivatives of shape functions, i.e. \(\frac{\partial x}{\partial \xi_i}\)
diff_tderivatives of shape functions, i.e. \(\frac{\partial t}{\partial \xi_i}\)
Return values
Lapproximation functions
diffLderivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\)
Parameters
dimdimension
Returns
error code

Definition at line 84 of file base_functions.c.

87 {
89#ifndef NDEBUG
90 if (dim < 1)
91 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim < 1");
92 if (dim > 3)
93 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim > 3");
94 if (p < 1)
95 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "p < 1");
96#endif // NDEBUG
97 L[0] = x;
98 if (diffL != NULL) {
99 int d = 0;
100 for (; d != dim; ++d) {
101 diffL[d * p + 0] = diff_x[d];
102 }
103 }
104 if (p == 0)
106 double jacobi[(p + 1)];
107 double diff_jacobi[(p + 1) * dim];
108 ierr = Jacobi_polynomials(p, alpha, x, t, diff_x, diff_t, jacobi, diff_jacobi,
109 dim);
110 CHKERRQ(ierr);
111 int l = 1;
112 for (; l < p; l++) {
113 int i = l + 1;
114 const double a = (i + alpha) / ((2 * i + alpha - 1) * (2 * i + alpha));
115 const double b = alpha / ((2 * i + alpha - 2) * (2 * i + alpha));
116 const double c = (i - 1) / ((2 * i + alpha - 2) * (2 * i + alpha - 1));
117 L[l] = a * jacobi[i] + b * t * jacobi[i - 1] - c * t * t * jacobi[i - 2];
118 if (diffL != NULL) {
119 int d = 0;
120 for (; d != dim; ++d) {
121 diffL[d * p + l] = a * diff_jacobi[d * (p + 1) + i] +
122 b * (t * diff_jacobi[d * (p + 1) + i - 1] +
123 diff_t[d] * jacobi[i - 1]) -
124 c * (t * t * diff_jacobi[d * (p + 1) + i - 2] +
125 2 * t * diff_t[d] * jacobi[i - 2]);
126 }
127 }
128 }
130}
constexpr double a
static PetscErrorCode ierr
PetscErrorCode Jacobi_polynomials(int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
Calculate Jacobi approximation basis.
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
@ MOFEM_INVALID_DATA
Definition definitions.h:36
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
FTensor::Index< 'l', 3 > l
constexpr double t
plate stiffness
Definition plate.cpp:58

◆ Jacobi_polynomials()

PetscErrorCode Jacobi_polynomials ( int  p,
double  alpha,
double  x,
double  t,
double diff_x,
double diff_t,
double L,
double diffL,
const int  dim 
)

Calculate Jacobi approximation basis.

For more details see [25]

Parameters
pis approximation order
alphapolynomial parameter
xis position \(s\in[0,t]\)
trange of polynomial
diff_xderivatives of shape functions, i.e. \(\frac{\partial x}{\partial \xi_i}\)
diff_tderivatives of shape functions, i.e. \(\frac{\partial t}{\partial \xi_i}\)
Return values
Lapproximation functions
diffLderivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\)
Parameters
dimdimension
Returns
error code

Definition at line 17 of file base_functions.c.

19 {
21#ifndef NDEBUG
22 if (dim < 1)
23 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim < 1");
24 if (dim > 3)
25 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim > 3");
26 if (p < 0)
27 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "p < 0");
28
29 if (diffL != NULL) {
30 if (diff_x == NULL) {
31 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "diff_s == NULL");
32 }
33 }
34
35#endif // NDEBUG
36 L[0] = 1;
37 if (diffL != NULL) {
38 diffL[0 * (p + 1) + 0] = 0;
39 if (dim >= 2) {
40 diffL[1 * (p + 1) + 0] = 0;
41 if (dim == 3) {
42 diffL[2 * (p + 1) + 0] = 0;
43 }
44 }
45 }
46 if (p == 0)
48 L[1] = 2 * x - t + alpha * x;
49 if (diffL != NULL) {
50 int d = 0;
51 for (; d < dim; ++d) {
52 double d_t = (diff_t) ? diff_t[d] : 0;
53 diffL[d * (p + 1) + 1] = (2 + alpha) * diff_x[d] - d_t;
54 }
55 }
56 if (p == 1)
58 int l = 1;
59 for (; l < p; l++) {
60 int lp1 = l + 1;
61 double a = 2 * lp1 * (lp1 + alpha) * (2 * lp1 + alpha - 2);
62 double b = 2 * lp1 + alpha - 1;
63 double c = (2 * lp1 + alpha) * (2 * lp1 + alpha - 2);
64 double d = 2 * (lp1 + alpha - 1) * (lp1 - 1) * (2 * lp1 + alpha);
65 double A = b * (c * (2 * x - t) + alpha * alpha * t) / a;
66 double B = d * t * t / a;
67 L[lp1] = A * L[l] - B * L[l - 1];
68 if (diffL != NULL) {
69 int z = 0;
70 for (; z < dim; ++z) {
71 double d_t = (diff_t) ? diff_t[z] : 0;
72 double diffA =
73 b * (c * (2 * diff_x[z] - d_t) + alpha * alpha * d_t) / a;
74 double diffB = d * 2 * t * d_t / a;
75 diffL[z * (p + 1) + lp1] = A * diffL[z * (p + 1) + l] -
76 B * diffL[z * (p + 1) + l - 1] +
77 diffA * L[l] - diffB * L[l - 1];
78 }
79 }
80 }
82}
constexpr AssemblyType A
[Define dimension]