v0.14.0 |
LHS-operator for the simple contact element. More...
#include <users_modules/mortar_contact/src/SimpleContact.hpp>
Public Member Functions | |
OpGapConstraintAugmentedOverSpatialMaster (const string field_name, const string lagrange_field_name, boost::shared_ptr< CommonDataSimpleContact > common_data_contact, const double cn) | |
MoFEMErrorCode | doWork (int row_side, int col_side, EntityType row_type, EntityType col_type, EntData &row_data, EntData &col_data) |
Integrates the conditions that fulfil KKT conditions at master face gauss points and assembles components to LHS global matrix. More... | |
Private Attributes | |
boost::shared_ptr< CommonDataSimpleContact > | commonDataSimpleContact |
const double | cN |
MatrixDouble | NN |
LHS-operator for the simple contact element.
Integrates variation on the slave sid the conditions that fulfil KKT conditions with respect to Spatial positions on the master side and assembles components to LHS global matrix.
Definition at line 2051 of file SimpleContact.hpp.
|
inline |
Definition at line 2053 of file SimpleContact.hpp.
MoFEMErrorCode SimpleContactProblem::OpGapConstraintAugmentedOverSpatialMaster::doWork | ( | int | row_side, |
int | col_side, | ||
EntityType | row_type, | ||
EntityType | col_type, | ||
EntData & | row_data, | ||
EntData & | col_data | ||
) |
Integrates the conditions that fulfil KKT conditions at master face gauss points and assembles components to LHS global matrix.
Integrates variation of the expresion that fulfils KKT conditions with respect to spatial positions in the integral sense and assembles components to LHS global matrix.
\[ {\text D}{\overline C(\lambda, \mathbf{x}^{(1)}, \delta \lambda)}[\Delta \mathbf{x}^{(2)}] = \left\{ \begin{array}{ll} \int_{{\gamma}^{(1)}_{\text c}} c_{\text n} \Delta \mathbf{x}^{(2)} \cdot {\mathbf{n}}_{\rm c} \delta{\lambda}\,\,{ {\text d} {\gamma}} & \lambda + c_{\text n} g_{\textrm{n}}\leq 0 \\ 0 & \lambda + c_{\text n} g_{\textrm{n}}> 0 \\ \end{array} \right. \]
where \({\gamma}^{(1)}_{\text c}\) is the surface integration domain of the slave surface, \( \lambda\) is the Lagrange multiplier, \(\mathbf{x}^{(1)}\) are the coordinates of the overlapping gauss points at slave and master triangles for \(i = 1\) and \(i = 2\), respectively. Furthermore, \( c_{\text n}\) works as an augmentation parameter and affects convergence, and \( g_{\textrm{n}}\) is the gap function evaluated at the slave triangle gauss points as:
\[ g_{\textrm{n}} = - \mathbf{n}(\mathbf{x}^{(1)}) \cdot \left( \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right) \]
Definition at line 1016 of file SimpleContact.cpp.
|
private |
Definition at line 2104 of file SimpleContact.hpp.
|
private |
Definition at line 2103 of file SimpleContact.hpp.
|
private |
Definition at line 2105 of file SimpleContact.hpp.