13    boost::shared_ptr<MatrixDouble> base_mass_ptr,
 
   14    boost::shared_ptr<EntitiesFieldData> data_l2,
 
   17      verbosity(verb), severityLevel(sev), baseMassPtr(base_mass_ptr),
 
 
 
   25  if (
dataL2->dataOnEntities[MBVERTEX].size() != 1) {
 
   26    dataL2->dataOnEntities[MBVERTEX].clear();
 
   27    dataL2->dataOnEntities[MBVERTEX].push_back(
 
   30  if (
dataL2->dataOnEntities[fe_type].size() != 1) {
 
   31    dataL2->dataOnEntities[fe_type].clear();
 
   35  auto &vertex_data = 
dataL2->dataOnEntities[MBVERTEX][0];
 
   36  vertex_data.getNSharedPtr(
NOBASE) =
 
   37      fe_ptr->getEntData(
H1, MBVERTEX, 0).getNSharedPtr(
NOBASE);
 
   38  vertex_data.getDiffNSharedPtr(
NOBASE) =
 
   39      fe_ptr->getEntData(
H1, MBVERTEX, 0).getDiffNSharedPtr(
NOBASE);
 
   41  auto &ent_data = 
dataL2->dataOnEntities[fe_type][0];
 
   42  ent_data.getSense() = 1;
 
   43  ent_data.getSpace() = 
L2;
 
   44  ent_data.getBase() = 
base;
 
   45  ent_data.getOrder() = get_order();
 
   47  CHKERR fe_ptr->getElementPolynomialBase()->getValue(
 
   48      getGaussPts(), boost::make_shared<EntPolynomialBaseCtx>(
 
 
   57  auto &ent_data = 
dataL2->dataOnEntities[fe_type][0];
 
   58  auto &base_funcions = ent_data.getN(
base);
 
   59  const auto nb = base_funcions.size2();
 
   63    const auto nb_integration_pts = 
getGaussPts().size2();
 
   68              "Mass matrix is null pointer");
 
   72    nN.resize(nb, nb, 
false);
 
   77    auto t_row_base = ent_data.getFTensor0N();
 
   79    for (
int gg = 0; gg != nb_integration_pts; ++gg) {
 
   81      const double alpha = t_w;
 
   83      for (
int rr = 0; rr != nb; ++rr) {
 
   86        auto a_mat_ptr = &nN(rr, 0);
 
   88        auto t_col_base = ent_data.getFTensor0N(gg, 0);
 
   90        for (
int cc = 0; cc <= rr; ++cc) {
 
   92          *a_mat_ptr += alpha * (t_row_base * t_col_base);
 
 
  114            "Space should be set to L2");
 
  118      [
this]() { 
return std::max(0, getPtrFE()->getMaxDataOrder() - 1); });
 
 
  125    boost::shared_ptr<EntitiesFieldData> data_l2,
 
  126    boost::shared_ptr<MatrixDouble> inv_jac_ptr)
 
 
  136    return applyTransform<2, 2, 2, 2>(diff_n);
 
  139  const auto fe_type = getFEType();
 
  140  auto &ent_data = dataL2->dataOnEntities[fe_type][0];
 
  141  CHKERR apply_transform(ent_data.getDiffN());
 
 
  147    int derivative, boost::shared_ptr<MatrixDouble> base_mass_ptr,
 
  148    boost::shared_ptr<EntitiesFieldData> data_l2,
 
  151      calcBaseDerivative(derivative) {
 
  153    doEntities[MBVERTEX] = 
false;
 
 
  156template <
int BASE_DIM, 
int SPACE_DIM>
 
  162  const int nb_gauss_pts = data.
getN(base).size1();
 
  163  const int nb_approx_bases = data.
getN(base).size2() / 
BASE_DIM;
 
  164  const int nb_derivatives =
 
  167  const int nb_prj_bases = ent_data.
getN().size2();
 
  171  if (!n_diff_shared_ptr)
 
  172    n_diff_shared_ptr = boost::make_shared<MatrixDouble>();
 
  174  auto &nex_diff_base = *(n_diff_shared_ptr);
 
  176  nex_diff_base.resize(nb_gauss_pts, nb_approx_bases * next_nb_derivatives,
 
  178  nex_diff_base.clear();
 
  181  auto next_diffs_ptr = &*nex_diff_base.data().begin();
 
  182  auto t_next_diff = getFTensor1FromPtr<SPACE_DIM>(next_diffs_ptr);
 
  184  for (
int gg = 0; gg != nb_gauss_pts; ++gg) {
 
  186    auto ptr = &*nF.data().begin();
 
  188    for (
auto r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
 
  191      for (
int rr = 0; rr != nb_prj_bases; ++rr) {
 
  192        t_next_diff(
i) += l2_diff_base(
i) * (*ptr);
 
 
  204template <
int BASE_DIM>
 
  210  auto &approx_base = data.
getN(base);
 
  211  const auto nb_approx_bases = approx_base.size2() / 
BASE_DIM;
 
  213  if (nb_approx_bases) {
 
  215    const auto fe_type = getFEType();
 
  216    const auto nb_integration_pts = approx_base.size1();
 
  218    const auto space_dim =
 
  222    int nb_derivatives = 
BASE_DIM * pow(space_dim, calcBaseDerivative - 1);
 
  224    auto &ent_data = dataL2->dataOnEntities[fe_type][0];
 
  225    const int nb_prj_bases = ent_data.getN().size2();
 
  230              "Mass matrix is null pointer");
 
  232    auto &nN = *baseMassPtr;
 
  235    if (diff_approx_base.size2() != nb_approx_bases * nb_derivatives) {
 
  237              "Number of derivatives and basses do not match");
 
  239    if (ent_data.getN().size1() != nb_integration_pts) {
 
  241              "Number of integration points is not consistent");
 
  243    if (nN.size2() != nb_prj_bases) {
 
  245              "Number of base functions and size of mass matrix does not math");
 
  249    nF.resize(nb_approx_bases * nb_derivatives, nb_prj_bases, 
false);
 
  252    auto t_w = getFTensor0IntegrationWeight();
 
  255    auto diff_base_ptr = &*diff_approx_base.data().begin();
 
  257    for (
int gg = 0; gg != nb_integration_pts; ++gg) {
 
  259      const double alpha = t_w;
 
  261      for (
int r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
 
  264        auto t_base = ent_data.getFTensor0N(base, gg, 0);
 
  265        for (
int rr = 0; rr != nb_prj_bases; ++rr) {
 
  266          nF(r, rr) += alpha * (t_base * (*diff_base_ptr));
 
  276    for (
auto r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
 
  277      ublas::matrix_row<MatrixDouble> mc(nF, r);
 
  282      CHKERR setBaseImpl<BASE_DIM, 3>(data, ent_data);
 
  283    else if (space_dim == 2)
 
  284      CHKERR setBaseImpl<BASE_DIM, 2>(data, ent_data);
 
  289               "Space dim can be only 1,2,3 but is %ld", space_dim);
 
 
  298  return doWorkImpl<1>(side, type, data);
 
 
  304  return doWorkImpl<3>(side, type, data);
 
 
ForcesAndSourcesCore::UserDataOperator UserDataOperator
void cholesky_solve(const TRIA &L, VEC &x, ublas::lower)
solve system L L^T x = b inplace
size_t cholesky_decompose(const MATRIX &A, TRIA &L)
decompose the symmetric positive definit matrix A into product L L^T.
FieldApproximationBase
approximation base
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
FieldSpace
approximation spaces
@ L2
field with C-1 continuity
@ CONTINUOUS
Regular field.
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_DATA_INCONSISTENCY
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
SeverityLevel
Severity levels.
FTensor::Index< 'i', SPACE_DIM > i
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
implementation of Data Operators for Forces and Sources
Data on single entity (This is passed as argument to DataOperator::doWork)
FTensor::Tensor1< FTensor::PackPtr< double *, Tensor_Dim >, Tensor_Dim > getFTensor1DiffN(const FieldApproximationBase base)
Get derivatives of base functions.
MatrixDouble & getDiffN(const FieldApproximationBase base)
get derivatives of base functions
virtual boost::shared_ptr< MatrixDouble > & getNSharedPtr(const FieldApproximationBase base, const BaseDerivatives derivative)
Get shared pointer to base functions with derivatives.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
EntityType getFEType() const
Get dimension of finite element.
auto getFTensor0IntegrationWeight()
Get integration weights.
ForcesAndSourcesCore * getPtrFE() const
MatrixDouble & getGaussPts()
matrix of integration (Gauss) points for Volume Element
structure to get information from mofem into EntitiesFieldData
OpBaseDerivativesBase(boost::shared_ptr< MatrixDouble > base_mass_ptr, boost::shared_ptr< EntitiesFieldData > data_l2, const FieldApproximationBase b, const FieldSpace s, int verb=QUIET, Sev sev=Sev::verbose)
boost::shared_ptr< EntitiesFieldData > dataL2
MoFEMErrorCode calculateBase(GetOrderFun get_order)
MoFEMErrorCode calculateMass()
boost::shared_ptr< MatrixDouble > baseMassPtr
boost::function< int()> GetOrderFun
FieldApproximationBase base
Transform local reference derivatives of shape functions to global derivatives.