v0.15.0
Loading...
Searching...
No Matches
BaseDerivativesDataOperators.cpp
Go to the documentation of this file.
1/** \file BaseDerivativesDataOperators.cpp
2
3
4*/
5
6
7
8#include <cholesky.hpp>
9
10namespace MoFEM {
11
13 boost::shared_ptr<MatrixDouble> base_mass_ptr,
14 boost::shared_ptr<EntitiesFieldData> data_l2,
15 const FieldApproximationBase b, const FieldSpace s, int verb, Sev sev)
16 : ForcesAndSourcesCore::UserDataOperator(s, OPSPACE), base(b),
17 verbosity(verb), severityLevel(sev), baseMassPtr(base_mass_ptr),
18 dataL2(data_l2) {}
19
22 auto fe_ptr = getPtrFE();
23 auto fe_type = getFEType();
24 // Set data structure to store base
25 if (dataL2->dataOnEntities[MBVERTEX].size() != 1) {
26 dataL2->dataOnEntities[MBVERTEX].clear();
27 dataL2->dataOnEntities[MBVERTEX].push_back(
29 }
30 if (dataL2->dataOnEntities[fe_type].size() != 1) {
31 dataL2->dataOnEntities[fe_type].clear();
32 dataL2->dataOnEntities[fe_type].push_back(new EntitiesFieldData::EntData());
33 }
34
35 auto &vertex_data = dataL2->dataOnEntities[MBVERTEX][0];
36 vertex_data.getNSharedPtr(NOBASE) =
37 fe_ptr->getEntData(H1, MBVERTEX, 0).getNSharedPtr(NOBASE);
38 vertex_data.getDiffNSharedPtr(NOBASE) =
39 fe_ptr->getEntData(H1, MBVERTEX, 0).getDiffNSharedPtr(NOBASE);
40
41 auto &ent_data = dataL2->dataOnEntities[fe_type][0];
42 ent_data.getSense() = 1;
43 ent_data.getSpace() = L2;
44 ent_data.getBase() = base;
45 ent_data.getOrder() = get_order();
46
47 CHKERR fe_ptr->getElementPolynomialBase()->getValue(
48 getGaussPts(), boost::make_shared<EntPolynomialBaseCtx>(
49 *dataL2, static_cast<FieldSpace>(L2), CONTINUOUS,
50 static_cast<FieldApproximationBase>(base), NOBASE));
52}
53
56 auto fe_type = getFEType();
57 auto &ent_data = dataL2->dataOnEntities[fe_type][0];
58 auto &base_funcions = ent_data.getN(base);
59 const auto nb = base_funcions.size2();
60
61 if (nb) {
62
63 const auto nb_integration_pts = getGaussPts().size2();
64
65#ifndef NDEBUG
66 if (!baseMassPtr)
67 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
68 "Mass matrix is null pointer");
69#endif
70
71 auto &nN = *baseMassPtr;
72 nN.resize(nb, nb, false);
73 nN.clear();
74
76 // get base function gradient on rows
77 auto t_row_base = ent_data.getFTensor0N();
78 // loop over integration points
79 for (int gg = 0; gg != nb_integration_pts; ++gg) {
80 // take into account Jacobian
81 const double alpha = t_w;
82
83 for (int rr = 0; rr != nb; ++rr) {
84
85 // loop over rows base functions
86 auto a_mat_ptr = &nN(rr, 0);
87 // get column base functions gradient at gauss point gg
88 auto t_col_base = ent_data.getFTensor0N(gg, 0);
89 // loop over columns
90 for (int cc = 0; cc <= rr; ++cc) {
91 // calculate element of local matrix
92 *a_mat_ptr += alpha * (t_row_base * t_col_base);
93 ++t_col_base;
94 ++a_mat_ptr;
95 }
96
97 ++t_row_base;
98 }
99 ++t_w; // move to another integration weight
100 }
101
103 }
105}
106
108OpBaseDerivativesMass<1>::doWork(int side, EntityType type,
111
112 if (sPace != L2) {
113 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
114 "Space should be set to L2");
115 }
116
117 CHKERR calculateBase(
118 [this]() { return std::max(0, getPtrFE()->getMaxDataOrder() - 1); });
119 CHKERR calculateMass();
120
122}
123
125 boost::shared_ptr<EntitiesFieldData> data_l2,
126 boost::shared_ptr<MatrixDouble> inv_jac_ptr)
127 : OpSetInvJacSpaceForFaceImpl<2, 1>(NOSPACE, inv_jac_ptr), dataL2(data_l2) {
128}
129
134
135 auto apply_transform = [&](MatrixDouble &diff_n) {
136 return applyTransform<2, 2, 2, 2>(diff_n);
137 };
138
139 const auto fe_type = getFEType();
140 auto &ent_data = dataL2->dataOnEntities[fe_type][0];
141 CHKERR apply_transform(ent_data.getDiffN());
142
144}
145
147 int derivative, boost::shared_ptr<MatrixDouble> base_mass_ptr,
148 boost::shared_ptr<EntitiesFieldData> data_l2,
149 const FieldApproximationBase b, const FieldSpace s, int verb, Sev sev)
150 : OpBaseDerivativesBase(base_mass_ptr, data_l2, b, s, verb, sev),
151 calcBaseDerivative(derivative) {
152 if (s != H1)
153 doEntities[MBVERTEX] = false;
154}
155
156template <int BASE_DIM, int SPACE_DIM>
159 EntitiesFieldData::EntData &ent_data) {
161
162 const int nb_gauss_pts = data.getN(base).size1();
163 const int nb_approx_bases = data.getN(base).size2() / BASE_DIM;
164 const int nb_derivatives =
165 BASE_DIM * std::pow(SPACE_DIM, calcBaseDerivative - 1);
166
167 const int nb_prj_bases = ent_data.getN().size2();
168
169 auto &n_diff_shared_ptr = data.getNSharedPtr(
170 base, static_cast<BaseDerivatives>(calcBaseDerivative));
171 if (!n_diff_shared_ptr)
172 n_diff_shared_ptr = boost::make_shared<MatrixDouble>();
173
174 auto &nex_diff_base = *(n_diff_shared_ptr);
175 const int next_nb_derivatives = BASE_DIM * pow(SPACE_DIM, calcBaseDerivative);
176 nex_diff_base.resize(nb_gauss_pts, nb_approx_bases * next_nb_derivatives,
177 false);
178 nex_diff_base.clear();
179
181 auto next_diffs_ptr = &*nex_diff_base.data().begin();
182 auto t_next_diff = getFTensor1FromPtr<SPACE_DIM>(next_diffs_ptr);
183
184 for (int gg = 0; gg != nb_gauss_pts; ++gg) {
185
186 auto ptr = &*nF.data().begin();
187
188 for (auto r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
189
190 auto l2_diff_base = ent_data.getFTensor1DiffN<SPACE_DIM>(base, gg, 0);
191 for (int rr = 0; rr != nb_prj_bases; ++rr) {
192 t_next_diff(i) += l2_diff_base(i) * (*ptr);
193 ++l2_diff_base;
194 ++ptr;
195 }
196
197 ++t_next_diff;
198 }
199 }
200
202}
203
204template <int BASE_DIM>
206OpBaseDerivativesNext<1>::doWorkImpl(int side, EntityType type,
209
210 auto &approx_base = data.getN(base);
211 const auto nb_approx_bases = approx_base.size2() / BASE_DIM;
212
213 if (nb_approx_bases) {
214
215 const auto fe_type = getFEType();
216 const auto nb_integration_pts = approx_base.size1();
217
218 const auto space_dim =
219 data.getDiffN(base).size2() / (BASE_DIM * nb_approx_bases);
220 auto &diff_approx_base = *(data.getNSharedPtr(
221 base, static_cast<BaseDerivatives>(calcBaseDerivative - 1)));
222 int nb_derivatives = BASE_DIM * pow(space_dim, calcBaseDerivative - 1);
223
224 auto &ent_data = dataL2->dataOnEntities[fe_type][0];
225 const int nb_prj_bases = ent_data.getN().size2();
226
227#ifndef NDEBUG
228 if (!baseMassPtr)
229 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
230 "Mass matrix is null pointer");
231#endif
232 auto &nN = *baseMassPtr;
233
234#ifndef NDEBUG
235 if (diff_approx_base.size2() != nb_approx_bases * nb_derivatives) {
236 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
237 "Number of derivatives and basses do not match");
238 }
239 if (ent_data.getN().size1() != nb_integration_pts) {
240 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
241 "Number of integration points is not consistent");
242 }
243 if (nN.size2() != nb_prj_bases) {
244 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
245 "Number of base functions and size of mass matrix does not math");
246 }
247#endif
248
249 nF.resize(nb_approx_bases * nb_derivatives, nb_prj_bases, false);
250 nF.clear();
251
252 auto t_w = getFTensor0IntegrationWeight();
253 // get base function gradient on rows
254
255 auto diff_base_ptr = &*diff_approx_base.data().begin();
256 // loop over integration points
257 for (int gg = 0; gg != nb_integration_pts; ++gg) {
258 // take into account Jacobian
259 const double alpha = t_w;
260
261 for (int r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
262
263 // Rows are base functions
264 auto t_base = ent_data.getFTensor0N(base, gg, 0);
265 for (int rr = 0; rr != nb_prj_bases; ++rr) {
266 nF(r, rr) += alpha * (t_base * (*diff_base_ptr));
267 ++t_base;
268 }
269
270 ++diff_base_ptr;
271 }
272
273 ++t_w; // move to another integration weight
274 }
275
276 for (auto r = 0; r != nb_approx_bases * nb_derivatives; ++r) {
277 ublas::matrix_row<MatrixDouble> mc(nF, r);
278 cholesky_solve(nN, mc, ublas::lower());
279 }
280
281 if (space_dim == 3)
282 CHKERR setBaseImpl<BASE_DIM, 3>(data, ent_data);
283 else if (space_dim == 2)
284 CHKERR setBaseImpl<BASE_DIM, 2>(data, ent_data);
285 // else if (space_dim == 1)
286 // CHKERR setBaseImpl<BASE_DIM, 1>(data, ent_data);
287 else
288 SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE,
289 "Space dim can be only 1,2,3 but is %ld", space_dim);
290 }
291
293}
294
296OpBaseDerivativesNext<1>::doWork(int side, EntityType type,
298 return doWorkImpl<1>(side, type, data);
299}
300
302OpBaseDerivativesNext<3>::doWork(int side, EntityType type,
304 return doWorkImpl<3>(side, type, data);
305}
306
307} // namespace MoFEM
ForcesAndSourcesCore::UserDataOperator UserDataOperator
constexpr int SPACE_DIM
cholesky decomposition
void cholesky_solve(const TRIA &L, VEC &x, ublas::lower)
solve system L L^T x = b inplace
Definition cholesky.hpp:221
size_t cholesky_decompose(const MATRIX &A, TRIA &L)
decompose the symmetric positive definit matrix A into product L L^T.
Definition cholesky.hpp:52
FieldApproximationBase
approximation base
Definition definitions.h:58
@ NOBASE
Definition definitions.h:59
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
FieldSpace
approximation spaces
Definition definitions.h:82
@ L2
field with C-1 continuity
Definition definitions.h:88
@ H1
continuous field
Definition definitions.h:85
@ NOSPACE
Definition definitions.h:83
@ CONTINUOUS
Regular field.
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_IMPOSSIBLE_CASE
Definition definitions.h:35
@ MOFEM_DATA_INCONSISTENCY
Definition definitions.h:31
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
constexpr int BASE_DIM
SeverityLevel
Severity levels.
FTensor::Index< 'i', SPACE_DIM > i
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
implementation of Data Operators for Forces and Sources
Definition Common.hpp:10
FTensor::Tensor1< FTensor::PackPtr< double *, S >, DIM > getFTensor1FromPtr(double *ptr)
Make Tensor1 from pointer.
Data on single entity (This is passed as argument to DataOperator::doWork)
FTensor::Tensor1< FTensor::PackPtr< double *, Tensor_Dim >, Tensor_Dim > getFTensor1DiffN(const FieldApproximationBase base)
Get derivatives of base functions.
MatrixDouble & getDiffN(const FieldApproximationBase base)
get derivatives of base functions
virtual boost::shared_ptr< MatrixDouble > & getNSharedPtr(const FieldApproximationBase base, const BaseDerivatives derivative)
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
EntityType getFEType() const
Get dimension of finite element.
auto getFTensor0IntegrationWeight()
Get integration weights.
MatrixDouble & getGaussPts()
matrix of integration (Gauss) points for Volume Element
structure to get information form mofem into EntitiesFieldData
OpBaseDerivativesBase(boost::shared_ptr< MatrixDouble > base_mass_ptr, boost::shared_ptr< EntitiesFieldData > data_l2, const FieldApproximationBase b, const FieldSpace s, int verb=QUIET, Sev sev=Sev::verbose)
boost::shared_ptr< EntitiesFieldData > dataL2
MoFEMErrorCode calculateBase(GetOrderFun get_order)
boost::shared_ptr< MatrixDouble > baseMassPtr
Transform local reference derivatives of shape functions to global derivatives.