v0.14.0 |
LHS-operator for the simple contact element with Augmented Lagrangian Method. More...
#include <users_modules/mortar_contact/src/SimpleContact.hpp>
Public Member Functions | |
OpCalContactAugmentedTractionOverLambdaMasterSlave (const string field_name, const string lagrange_field_name, boost::shared_ptr< CommonDataSimpleContact > common_data_contact) | |
MoFEMErrorCode | doWork (int row_side, int col_side, EntityType row_type, EntityType col_type, EntData &row_data, EntData &col_data) |
Integrates virtual work on master side , \( \delta W_{\text c}\), derivative with respect to Lagrange multipliers on slave side and assembles its components to LHS global matrix. More... | |
Private Attributes | |
boost::shared_ptr< CommonDataSimpleContact > | commonDataSimpleContact |
MatrixDouble | NN |
LHS-operator for the simple contact element with Augmented Lagrangian Method.
Integrates Lagrange multipliers virtual work, \( \delta W_{\text c}\) derivative with respect to Lagrange multipliers on master side and assembles components of the LHS global matrix.
Definition at line 1577 of file SimpleContact.hpp.
|
inline |
Definition at line 1580 of file SimpleContact.hpp.
MoFEMErrorCode SimpleContactProblem::OpCalContactAugmentedTractionOverLambdaMasterSlave::doWork | ( | int | row_side, |
int | col_side, | ||
EntityType | row_type, | ||
EntityType | col_type, | ||
EntData & | row_data, | ||
EntData & | col_data | ||
) |
Integrates virtual work on master side , \( \delta W_{\text c}\), derivative with respect to Lagrange multipliers on slave side and assembles its components to LHS global matrix.
Computes linearisation of virtual work on master side integrated on the slave side and assembles the components of its derivative over Lagrange multipliers.
\[ {\text D} {\delta W^{(2)}_{\text c}(\lambda, \delta \mathbf{x}^{(2)}})[\Delta \lambda] \,\, = \left\{ \begin{array}{ll} \int_{{\gamma}^{(1)}_{\text c}} \Delta \lambda \mathbf{n}(\mathbf{x}^{(1)}) \cdot \delta{\mathbf{x}^{(2)}}\,\,{ {\text d} {\gamma}} & \lambda + c_{\text n} g_{\textrm{n}}\leq 0 \\ 0 & \lambda + c_{\text n} g_{\textrm{n}}> 0 \\ \end{array} \right. \]
where \({\gamma}^{(1)}_{\text c}\) is the surface integration domain of the slave surface, \( \lambda\) is the Lagrange multiplier, \(\mathbf{x}^{(2)}\) are the coordinates of the overlapping gauss points at master triangles, \( c_{\textrm n}\) is the regularisation/augmentation parameter of stress dimensions and \( g_{\textrm{n}}\) is the gap evaluated on the corresponding slave side.
Definition at line 804 of file SimpleContact.cpp.
|
private |
Definition at line 1629 of file SimpleContact.hpp.
|
private |
Definition at line 1630 of file SimpleContact.hpp.