v0.14.0 |
LHS-operator for the simple contact element with Augmented Lagrangian Method. More...
#include <users_modules/mortar_contact/src/SimpleContact.hpp>
Public Member Functions | |
OpCalContactAugmentedTractionOverLambdaSlaveSlave (const string field_name, const string lagrange_field_name, boost::shared_ptr< CommonDataSimpleContact > common_data_contact) | |
MoFEMErrorCode | doWork (int row_side, int col_side, EntityType row_type, EntityType col_type, EntData &row_data, EntData &col_data) |
Integrates virtual work on slave side , \( \delta W_{\text c}\), derivative with respect to Lagrange multipliers on slave side and assembles its components to LHS global matrix. More... | |
Private Attributes | |
boost::shared_ptr< CommonDataSimpleContact > | commonDataSimpleContact |
MatrixDouble | NN |
LHS-operator for the simple contact element with Augmented Lagrangian Method.
Integrates Lagrange multipliers virtual work, \( \delta W_{\text c}\) derivative with respect to Lagrange multipliers on slave side and assembles components of the LHS matrix.
Definition at line 1642 of file SimpleContact.hpp.
|
inline |
Definition at line 1645 of file SimpleContact.hpp.
MoFEMErrorCode SimpleContactProblem::OpCalContactAugmentedTractionOverLambdaSlaveSlave::doWork | ( | int | row_side, |
int | col_side, | ||
EntityType | row_type, | ||
EntityType | col_type, | ||
EntData & | row_data, | ||
EntData & | col_data | ||
) |
Integrates virtual work on slave side , \( \delta W_{\text c}\), derivative with respect to Lagrange multipliers on slave side and assembles its components to LHS global matrix.
Computes linearisation of virtual work on slave side integrated on the slave side and assembles the components of its derivative over Lagrange multipliers.
\[ {\text D} {\delta W^{(1)}_{\text c}(\lambda, \delta \mathbf{x}^{(1)}})[\Delta \lambda] \,\, = \left\{ \begin{array}{ll} \int_{{\gamma}^{(1)}_{\text c}} - \Delta \lambda {\mathbf{n}}_{\rm c} \cdot \delta{\mathbf{x}^{(1)}}\,\,{ {\text d} {\gamma}} & \lambda + c_{\text n} g_{\textrm{n}}\leq 0 \\ 0 & \lambda + c_{\text n} g_{\textrm{n}}> 0 \\ \end{array} \right. \]
where \({\gamma}^{(1)}_{\text c}\) is the surface integration domain of the slave surface, \( \lambda\) is the Lagrange multiplier, \(\mathbf{x}^{(1)}\) are the coordinates of the overlapping gauss points at master triangles, \( c_{\textrm n}\) is the regularisation/augmentation parameter of stress dimensions and \( g_{\textrm{n}}\) is the gap evaluated on the corresponding slave side.
Definition at line 878 of file SimpleContact.cpp.
|
private |
Definition at line 1693 of file SimpleContact.hpp.
|
private |
Definition at line 1694 of file SimpleContact.hpp.