v0.14.0 |
LHS-operator for the simple contact element with Augmented Lagrangian Method. More...
#include <users_modules/mortar_contact/src/SimpleContact.hpp>
Public Member Functions | |
OpCalContactAugmentedTractionOverSpatialSlaveSlave (const string field_name, const string field_name_2, const double cn_value, boost::shared_ptr< CommonDataSimpleContact > common_data_contact) | |
MoFEMErrorCode | doWork (int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data) |
Integrates virtual work on slave side, \( \delta W_{\text c}\), derivative with respect to slave spatial positions and assembles its components to LHS global matrix. More... | |
Private Attributes | |
boost::shared_ptr< CommonDataSimpleContact > | commonDataSimpleContact |
const double | cN |
MatrixDouble | NN |
LHS-operator for the simple contact element with Augmented Lagrangian Method.
Integrates Spatial position on slave side multipliers virtual work, \( \delta W_{\text c}\) derivative with respect to spatial positions on master side and assembles components of the LHS matrix.
Definition at line 1846 of file SimpleContact.hpp.
|
inline |
Definition at line 1849 of file SimpleContact.hpp.
MoFEMErrorCode SimpleContactProblem::OpCalContactAugmentedTractionOverSpatialSlaveSlave::doWork | ( | int | row_side, |
int | col_side, | ||
EntityType | row_type, | ||
EntityType | col_type, | ||
EntitiesFieldData::EntData & | row_data, | ||
EntitiesFieldData::EntData & | col_data | ||
) |
Integrates virtual work on slave side, \( \delta W_{\text c}\), derivative with respect to slave spatial positions and assembles its components to LHS global matrix.
Computes linearisation of virtual work on slave side integrated on the slave side and assembles the components of its derivative over Lagrange multipliers.
\[ {\text D} {\delta W^{(1)}_{\text c}(\lambda, \delta \mathbf{x}^{(1)}})[\Delta {\mathbf{x}^{(1)}}] \,\, = \left\{ \begin{array}{ll} \int_{{\gamma}^{(1)}_{\text c}} c_{\textrm n}\Delta {\mathbf{x}^{(1)}} \cdot [{\mathbf{n}}_{\rm c} \otimes {\mathbf{n}}_{\rm c}] \cdot \delta{\mathbf{x}^{(1)}}\,\,{ {\text d} {\gamma}} & \lambda + c_{\text n} g_{\textrm{n}}\leq 0 \\ 0 & \lambda + c_{\text n} g_{\textrm{n}}> 0 \\ \end{array} \right. \]
where \({\gamma}^{(1)}_{\text c}\) is the surface integration domain of the slave surface, \( \lambda\) is the Lagrange multiplier, \(\mathbf{x}^{(1)}\) are the coordinates of the overlapping gauss points at slave triangles, respectively. Also, \( c_{\textrm n}\) is the regularisation/augmentation parameter of stress dimensions and \( g_{\textrm{n}}\) is the gap evaluated on the corresponding slave side.
Definition at line 1337 of file SimpleContact.cpp.
|
private |
Definition at line 1903 of file SimpleContact.hpp.
|
private |
Definition at line 1902 of file SimpleContact.hpp.
|
private |
Definition at line 1904 of file SimpleContact.hpp.