v0.10.0
analytical_poisson_field_split.cpp

For more information and detailed explain of this example see Using fieldsplit solver and DM sub problem.

/**
* \file analytical_poisson_field_split.cpp
* \ingroup mofem_simple_interface
* \example analytical_poisson_field_split.cpp
*
* For more information and detailed explain of this
* example see \ref poisson_tut3
*
*
*/
/* This file is part of MoFEM.
* MoFEM is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* MoFEM is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with MoFEM. If not, see <http://www.gnu.org/licenses/>. */
#include <BasicFiniteElements.hpp>
#include <PoissonOperators.hpp>
static char help[] = "...\n\n";
static const bool debug = false;
/**
* \brief Function
*
* This is prescribed exact function. If this function is given by polynomial
* order of "p" and order of approximation is "p" or higher, solution of
* finite element method is exact (with machine precision).
*
* \f[
* u = 1+x^2+y^2+z^3
* \f]
*
*/
struct ExactFunction {
double operator()(const double x, const double y, const double z) const {
return 1 + x * x + y * y + z * z * z;
}
};
/**
* \brief Exact gradient
*/
FTensor::Tensor1<double, 3> operator()(const double x, const double y,
const double z) const {
grad(0) = 2 * x;
grad(1) = 2 * y;
grad(2) = 3 * z * z;
return grad;
}
};
/**
* \brief Laplacian of function.
*
* This is Laplacian of \f$u\f$, it is calculated using formula
* \f[
* \nabla^2 u(x,y,z) = \nabla \cdot \nabla u
* \frac{\partial^2 u}{\partial x^2}+
* \frac{\partial^2 u}{\partial y^2}+
* \frac{\partial^2 u}{\partial z^2}
* \f]
*
*/
double operator()(const double x, const double y, const double z) const {
return 4 + 6 * z;
}
};
OpS(const bool beta = 1)
true),
bEta(beta) {}
/**
* \brief Do calculations for give operator
* @param row_side row side number (local number) of entity on element
* @param col_side column side number (local number) of entity on element
* @param row_type type of row entity MBVERTEX, MBEDGE, MBTRI or MBTET
* @param col_type type of column entity MBVERTEX, MBEDGE, MBTRI or MBTET
* @param row_data data for row
* @param col_data data for column
* @return error code
*/
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
EntityType col_type,
// get number of dofs on row
nbRows = row_data.getIndices().size();
// if no dofs on row, exit that work, nothing to do here
if (!nbRows)
// get number of dofs on column
nbCols = col_data.getIndices().size();
// if no dofs on Columbia, exit nothing to do here
if (!nbCols)
// get number of integration points
nbIntegrationPts = getGaussPts().size2();
// check if entity block is on matrix diagonal
if (row_side == col_side && row_type == col_type) {
isDiag = true; // yes, it is
} else {
isDiag = false;
}
// integrate local matrix for entity block
CHKERR iNtegrate(row_data, col_data);
// assemble local matrix
CHKERR aSsemble(row_data, col_data);
}
private:
const double bEta;
///< error code
int nbRows; ///< number of dofs on rows
int nbCols; ///< number if dof on column
int nbIntegrationPts; ///< number of integration points
bool isDiag; ///< true if this block is on diagonal
FTensor::Index<'i', 3> i; ///< summit Index
MatrixDouble locMat; ///< local entity block matrix
/**
* \brief Integrate grad-grad operator
* @param row_data row data (consist base functions on row entity)
* @param col_data column data (consist base functions on column entity)
* @return error code
*/
// set size of local entity bock
locMat.resize(nbRows, nbCols, false);
// clear matrix
locMat.clear();
// get element area
double area = getArea() * bEta;
// get integration weights
auto t_w = getFTensor0IntegrationWeight();
// get base function gradient on rows
auto t_row_base = row_data.getFTensor0N();
// loop over integration points
for (int gg = 0; gg != nbIntegrationPts; gg++) {
// take into account Jacobean
const double alpha = t_w * area;
// take fist element to local matrix
&*locMat.data().begin());
// loop over rows base functions
for (int rr = 0; rr != nbRows; rr++) {
// get column base functions gradient at gauss point gg
auto t_col_base = col_data.getFTensor0N(gg, 0);
// loop over columns
for (int cc = 0; cc != nbCols; cc++) {
// calculate element of local matrix
a += alpha * t_row_base * t_col_base;
++t_col_base; // move to another gradient of base function on column
++a; // move to another element of local matrix in column
}
++t_row_base; // move to another element of gradient of base function on
// row
}
++t_w; // move to another integration weight
}
}
/**
* \brief Assemble local entity block matrix
* @param row_data row data (consist base functions on row entity)
* @param col_data column data (consist base functions on column entity)
* @return error code
*/
// get pointer to first global index on row
const int *row_indices = &*row_data.getIndices().data().begin();
// get pointer to first global index on column
const int *col_indices = &*col_data.getIndices().data().begin();
Mat B = getFEMethod()->ksp_B != PETSC_NULL ? getFEMethod()->ksp_B
: getFEMethod()->snes_B;
// assemble local matrix
CHKERR MatSetValues(B, nbRows, row_indices, nbCols, col_indices,
&*locMat.data().begin(), ADD_VALUES);
if (!isDiag) {
// if not diagonal term and since global matrix is symmetric assemble
// transpose term.
locMat = trans(locMat);
CHKERR MatSetValues(B, nbCols, col_indices, nbRows, row_indices,
&*locMat.data().begin(), ADD_VALUES);
}
}
};
int main(int argc, char *argv[]) {
// Initialize PETSc
MoFEM::Core::Initialize(&argc, &argv, (char *)0, help);
// Create MoAB database
moab::Core moab_core; // create database
moab::Interface &moab = moab_core; // create interface to database
try {
// Get command line options
int order = 3; // default approximation order
PetscBool flg_test = PETSC_FALSE; // true check if error is numerical error
CHKERR PetscOptionsBegin(PETSC_COMM_WORLD, "", "Poisson's problem options",
"none");
// Set approximation order
CHKERR PetscOptionsInt("-order", "approximation order", "", order, &order,
PETSC_NULL);
// Set testing (used by CTest)
CHKERR PetscOptionsBool("-test", "if true is ctest", "", flg_test,
&flg_test, PETSC_NULL);
ierr = PetscOptionsEnd();
// Create MoFEM database and link it to MoAB
MoFEM::Core mofem_core(moab); // create database
MoFEM::Interface &m_field = mofem_core; // create interface to database
// Register DM Manager
CHKERR DMRegister_MoFEM("DMMOFEM"); // register MoFEM DM in PETSc
// Create vector to store approximation global error
Vec global_error;
// First we crate elements, implementation of elements is problem
// independent, we do not know yet what fields are present in the problem,
// or even we do not decided yet what approximation base or spaces we are
// going to use. Implementation of element is free from those constrains and
// can be used in different context.
// Elements used by KSP & DM to assemble system of equations
boost::shared_ptr<ForcesAndSourcesCore>
domain_lhs_fe; ///< Volume element for the matrix
boost::shared_ptr<ForcesAndSourcesCore>
boundary_lhs_fe; ///< Boundary element for the matrix
boost::shared_ptr<ForcesAndSourcesCore>
domain_rhs_fe; ///< Volume element to assemble vector
boost::shared_ptr<ForcesAndSourcesCore>
boundary_rhs_fe; ///< Volume element to assemble vector
boost::shared_ptr<ForcesAndSourcesCore>
domain_error; ///< Volume element evaluate error
boost::shared_ptr<ForcesAndSourcesCore>
post_proc_volume; ///< Volume element to Post-process results
boost::shared_ptr<ForcesAndSourcesCore> null; ///< Null element do nothing
boost::shared_ptr<ForcesAndSourcesCore> boundary_penalty_lhs_fe;
{
// Add problem specific operators the generic finite elements to calculate
// matrices and vectors.
boundary_lhs_fe, domain_rhs_fe, boundary_rhs_fe, false);
// Add problem specific operators the generic finite elements to calculate
// error on elements and global error in H1 norm
global_error, domain_error);
// Post-process results
.creatFEToPostProcessResults(post_proc_volume);
const double beta = 1;
boundary_penalty_lhs_fe = boost::shared_ptr<ForcesAndSourcesCore>(
boundary_penalty_lhs_fe->getRuleHook = PoissonExample::FaceRule();
boundary_penalty_lhs_fe->getOpPtrVector().push_back(new OpS(beta));
boundary_rhs_fe->getOpPtrVector().push_back(
new PoissonExample::Op_g(ExactFunction(), "U", beta));
}
// Get simple interface is simplified version enabling quick and
// easy construction of problem.
Simple *simple_interface;
// Query interface and get pointer to Simple interface
CHKERR m_field.getInterface(simple_interface);
// Build problem with simple interface
{
// Get options for simple interface from command line
CHKERR simple_interface->getOptions();
// Load mesh file to database
CHKERR simple_interface->loadFile();
// Add field on domain and boundary. Field is declared by space and base
// and rank. space can be H1. Hcurl, Hdiv and L2, base can be
// AINSWORTH_LEGENDRE_BASE, DEMKOWICZ_JACOBI_BASE and more, where rank is
// number of coefficients for dof.
//
// Simple interface assumes that there are four types of field; 1) defined
// on body domain, 2) fields defined on body boundary, 3) skeleton field
// defined on finite element skeleton. Finally data field is defined on
// body domain. Data field is not solved but used for post-process or to
// keep material parameters, etc. Here we using it to calculate
// approximation error on elements.
// Add domain filed "U" in space H1 and Legendre base, Ainsworth recipe is
// used to construct base functions.
CHKERR simple_interface->addDomainField("U", H1, AINSWORTH_LEGENDRE_BASE,
1);
// Add Lagrange multiplier field on body boundary
CHKERR simple_interface->addBoundaryField("L", H1,
// Add error (data) field, we need only L2 norm. Later order is set to 0,
// so this is piecewise discontinuous constant approx., i.e. 1 DOF for
// element. You can use more DOFs and collate moments of error to drive
// anisotropic h/p-adaptivity, however this is beyond this example.
CHKERR simple_interface->addDataField("ERROR", L2,
// Set fields order domain and boundary fields.
CHKERR simple_interface->setFieldOrder("U",
order); // to approximate function
CHKERR simple_interface->setFieldOrder("L",
order); // to Lagrange multipliers
CHKERR simple_interface->setFieldOrder(
"ERROR", 0); // approximation order for error
// Setup problem. At that point database is constructed, i.e. fields,
// finite elements and problem data structures with local and global
// indexing.
CHKERR simple_interface->setUp();
}
// Get access to PETSC-MoFEM DM manager.
// or more derails see
// <http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html>
// Form that point internal MoFEM data structures are linked with PETSc
// interface. If DM functions contains string MoFEM is is MoFEM specific DM
// interface function, otherwise DM function part of standard PETSc
// interface.
DM dm;
// Get dm
CHKERR simple_interface->getDM(&dm);
// Solve problem, only PETEc interface here.
{
// Create the right hand side vector and vector of unknowns
Vec F, D;
CHKERR DMCreateGlobalVector(dm, &F);
// Create unknown vector by creating duplicate copy of F vector. only
// structure is duplicated no values.
CHKERR VecDuplicate(F, &D);
DM dm_sub_KK, dm_sub_LU;
ublas::matrix<Mat> nested_matrices(2, 2);
ublas::vector<IS> nested_is(2);
CHKERR DMCreate(PETSC_COMM_WORLD, &dm_sub_KK);
CHKERR DMSetType(dm_sub_KK, "DMMOFEM");
CHKERR DMMoFEMCreateSubDM(dm_sub_KK, dm, "SUB_KK");
CHKERR DMSetFromOptions(dm_sub_KK);
CHKERR DMMoFEMSetSquareProblem(dm_sub_KK, PETSC_TRUE);
CHKERR DMMoFEMAddSubFieldRow(dm_sub_KK, "U");
CHKERR DMMoFEMAddSubFieldCol(dm_sub_KK, "U");
simple_interface->getDomainFEName().c_str());
simple_interface->getBoundaryFEName().c_str());
CHKERR DMSetUp(dm_sub_KK);
CHKERR DMMoFEMGetSubRowIS(dm_sub_KK, &nested_is[0]);
CHKERR DMCreateMatrix(dm_sub_KK, &nested_matrices(0, 0));
domain_lhs_fe->ksp_B = nested_matrices(0, 0);
dm_sub_KK, simple_interface->getDomainFEName(), domain_lhs_fe);
boundary_penalty_lhs_fe->ksp_B = nested_matrices(0, 0);
simple_interface->getBoundaryFEName(),
boundary_penalty_lhs_fe);
CHKERR MatAssemblyBegin(nested_matrices(0, 0), MAT_FINAL_ASSEMBLY);
CHKERR MatAssemblyEnd(nested_matrices(0, 0), MAT_FINAL_ASSEMBLY);
CHKERR DMDestroy(&dm_sub_KK);
//
CHKERR DMCreate(PETSC_COMM_WORLD, &dm_sub_LU);
CHKERR DMSetType(dm_sub_LU, "DMMOFEM");
CHKERR DMMoFEMCreateSubDM(dm_sub_LU, dm, "SUB_LU");
CHKERR DMSetFromOptions(dm_sub_LU);
CHKERR DMMoFEMSetSquareProblem(dm_sub_LU, PETSC_FALSE);
CHKERR DMMoFEMAddSubFieldRow(dm_sub_LU, "L");
CHKERR DMMoFEMAddSubFieldCol(dm_sub_LU, "U");
simple_interface->getBoundaryFEName().c_str());
CHKERR DMSetUp(dm_sub_LU);
CHKERR DMMoFEMGetSubRowIS(dm_sub_LU, &nested_is[1]);
CHKERR DMCreateMatrix(dm_sub_LU, &nested_matrices(1, 0));
boundary_lhs_fe->ksp_B = nested_matrices(1, 0);
dm_sub_LU, simple_interface->getBoundaryFEName(), boundary_lhs_fe);
CHKERR MatAssemblyBegin(nested_matrices(1, 0), MAT_FINAL_ASSEMBLY);
CHKERR MatAssemblyEnd(nested_matrices(1, 0), MAT_FINAL_ASSEMBLY);
// CHKERR MatCreateTranspose(nested_matrices(1,0),&nested_matrices(0,1));
CHKERR MatTranspose(nested_matrices(1, 0), MAT_INITIAL_MATRIX,
&nested_matrices(0, 1));
CHKERR DMDestroy(&dm_sub_LU);
domain_rhs_fe->ksp_f = F;
CHKERR DMoFEMLoopFiniteElements(dm, simple_interface->getDomainFEName(),
domain_rhs_fe);
boundary_rhs_fe->ksp_f = F;
CHKERR DMoFEMLoopFiniteElements(dm, simple_interface->getBoundaryFEName(),
boundary_rhs_fe);
CHKERR VecAssemblyBegin(F);
CHKERR VecAssemblyEnd(F);
Mat A;
nested_matrices(1, 1) = PETSC_NULL;
if (debug) {
MatType type;
MatGetType(nested_matrices(0, 0), &type);
cerr << "K " << type << endl;
MatGetType(nested_matrices(1, 0), &type);
cerr << "C " << type << endl;
MatGetType(nested_matrices(0, 1), &type);
cerr << "CT " << type << endl;
std::string wait;
cerr << "UU" << endl;
MatView(nested_matrices(0, 0), PETSC_VIEWER_DRAW_WORLD);
std::cin >> wait;
cerr << "LU" << endl;
MatView(nested_matrices(1, 0), PETSC_VIEWER_DRAW_WORLD);
std::cin >> wait;
cerr << "UL" << endl;
MatView(nested_matrices(0, 1), PETSC_VIEWER_DRAW_WORLD);
std::cin >> wait;
}
CHKERR MatCreateNest(PETSC_COMM_WORLD, 2, &nested_is[0], 2, &nested_is[0],
&nested_matrices(0, 0), &A);
// Create solver and link it to DM
KSP solver;
CHKERR KSPCreate(PETSC_COMM_WORLD, &solver);
CHKERR KSPSetFromOptions(solver);
// Set operators
CHKERR KSPSetOperators(solver, A, A);
PC pc;
CHKERR KSPGetPC(solver, &pc);
PetscBool is_pcfs = PETSC_FALSE;
PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &is_pcfs);
if (is_pcfs) {
CHKERR PCFieldSplitSetIS(pc, NULL, nested_is[0]);
CHKERR PCFieldSplitSetIS(pc, NULL, nested_is[1]);
} else {
SETERRQ(PETSC_COMM_WORLD, MOFEM_DATA_INCONSISTENCY,
"Only works with pre-conditioner PCFIELDSPLIT");
}
// Set-up solver, is type of solver and pre-conditioners
CHKERR KSPSetUp(solver);
// At solution process, KSP solver using DM creates matrices, Calculate
// values of the left hand side and the right hand side vector. then
// solves system of equations. Results are stored in vector D.
CHKERR KSPSolve(solver, F, D);
// Scatter solution on the mesh. Stores unknown vector on field on the
// mesh.
CHKERR DMoFEMMeshToGlobalVector(dm, D, INSERT_VALUES, SCATTER_REVERSE);
// Clean data. Solver and vector are not needed any more.
CHKERR KSPDestroy(&solver);
for (int i = 0; i != 2; i++) {
CHKERR ISDestroy(&nested_is[i]);
for (int j = 0; j != 2; j++) {
CHKERR MatDestroy(&nested_matrices(i, j));
}
}
CHKERR MatDestroy(&A);
CHKERR VecDestroy(&D);
CHKERR VecDestroy(&F);
}
// Calculate error
{
// Loop over all elements in mesh, and run users operators on each
// element.
CHKERR DMoFEMLoopFiniteElements(dm, simple_interface->getDomainFEName(),
domain_error);
global_error);
if (flg_test == PETSC_TRUE) {
}
}
{
// Loop over all elements in the mesh and for each execute
// post_proc_volume element and operators on it.
CHKERR DMoFEMLoopFiniteElements(dm, simple_interface->getDomainFEName(),
post_proc_volume);
// Write results
CHKERR boost::static_pointer_cast<PostProcVolumeOnRefinedMesh>(
post_proc_volume)
->writeFile("out_vol.h5m");
}
// Destroy DM, no longer needed.
CHKERR DMDestroy(&dm);
// Destroy ghost vector
CHKERR VecDestroy(&global_error);
}
// finish work cleaning memory, getting statistics, etc.
return 0;
}
ForcesAndSourcesCore::UserDataOperator UserDataOperator
int main(int argc, char *argv[])
static char help[]
static const bool debug
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:441
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition: definitions.h:152
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:516
@ L2
field with C-1 continuity
Definition: definitions.h:180
@ H1
continuous field
Definition: definitions.h:177
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:415
#define CHKERRG(n)
Check error code of MoFEM/MOAB/PETSc function.
Definition: definitions.h:552
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:123
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:485
#define CHKERR
Inline error check.
Definition: definitions.h:604
PetscErrorCode DMMoFEMCreateSubDM(DM subdm, DM dm, const char problem_name[])
Must be called by user to set Sub DM MoFEM data structures.
Definition: DMMMoFEM.cpp:177
PetscErrorCode DMMoFEMSetSquareProblem(DM dm, PetscBool square_problem)
set squared problem
Definition: DMMMoFEM.cpp:378
PetscErrorCode DMMoFEMAddSubFieldRow(DM dm, const char field_name[], EntityType lo_type=MBVERTEX, EntityType hi_type=MBMAXTYPE)
Definition: DMMMoFEM.cpp:198
PetscErrorCode DMoFEMLoopFiniteElements(DM dm, const char fe_name[], MoFEM::FEMethod *method)
Executes FEMethod for finite elements in DM.
Definition: DMMMoFEM.cpp:507
PetscErrorCode DMMoFEMAddElement(DM dm, const char fe_name[])
add element to dm
Definition: DMMMoFEM.cpp:425
PetscErrorCode DMMoFEMAddSubFieldCol(DM dm, const char field_name[], EntityType lo_type=MBVERTEX, EntityType hi_type=MBMAXTYPE)
Definition: DMMMoFEM.cpp:221
PetscErrorCode DMRegister_MoFEM(const char sname[])
Register MoFEM problem.
Definition: DMMMoFEM.cpp:48
PetscErrorCode DMoFEMMeshToGlobalVector(DM dm, Vec g, InsertMode mode, ScatterMode scatter_mode)
set ghosted vector values on all existing mesh entities
Definition: DMMMoFEM.cpp:457
FaceElementForcesAndSourcesCoreSwitch< 0 > FaceElementForcesAndSourcesCore
Face finite element default.
FTensor::Index< 'j', 3 > j
FTensor::Index< 'i', 3 > i
const FTensor::Tensor2< T, Dim, Dim > Vec
static MoFEMErrorCodeGeneric< PetscErrorCode > ierr
Definition: Exceptions.hpp:87
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:67
ublas::matrix< double, ublas::row_major, DoubleAllocator > MatrixDouble
Definition: Types.hpp:76
PetscErrorCode DMMoFEMGetSubRowIS(DM dm, IS *is)
get sub problem is
Definition: DMMMoFEM.cpp:253
CoreTmp< 0 > Core
Definition: Core.hpp:1129
DeprecatedCoreInterface Interface
Definition: Interface.hpp:1943
constexpr auto MatSetValues
const double D
diffusivity
DataForcesAndSourcesCore::EntData EntData
Exact gradient.
FTensor::Tensor1< double, 3 > operator()(const double x, const double y, const double t) const
double operator()(const double x, const double y, const double t) const
double operator()(const double x, const double y, const double z) const
Core (interface) class.
Definition: Core.hpp:77
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:60
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:100
Deprecated interface functions.
MoFEMErrorCode getInterface(const MOFEMuuid &uuid, IFACE *&iface) const
Get interface by uuid and return reference to pointer of interface.
int nbIntegrationPts
number of integration points
OpS(const bool beta=1)
int nbRows
number of dofs on rows
MoFEMErrorCode iNtegrate(DataForcesAndSourcesCore::EntData &row_data, DataForcesAndSourcesCore::EntData &col_data)
Integrate grad-grad operator.
MoFEMErrorCode aSsemble(DataForcesAndSourcesCore::EntData &row_data, DataForcesAndSourcesCore::EntData &col_data)
Assemble local entity block matrix.
int nbCols
number if dof on column
const double bEta
error code
MatrixDouble locMat
local entity block matrix
bool isDiag
true if this block is on diagonal
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type, EntityType col_type, DataForcesAndSourcesCore::EntData &row_data, DataForcesAndSourcesCore::EntData &col_data)
Do calculations for give operator.
FTensor::Index< 'i', 3 > i
summit Index
MoFEMErrorCode createGhostVec(Vec *ghost_vec) const
MoFEMErrorCode testError(Vec ghost_vec)
Test error.
MoFEMErrorCode assembleGhostVector(Vec ghost_vec) const
Assemble error vector.
MoFEMErrorCode printError(Vec ghost_vec)
Print error.
Create finite elements instances.
MoFEMErrorCode creatFEToPostProcessResults(boost::shared_ptr< ForcesAndSourcesCore > &post_proc_volume) const
Create finite element to post-process results.
MoFEMErrorCode createFEToEvaluateError(boost::function< double(const double, const double, const double)> f_u, boost::function< FTensor::Tensor1< double, 3 >(const double, const double, const double)> g_u, Vec global_error, boost::shared_ptr< ForcesAndSourcesCore > &domain_error) const
Create finite element to calculate error.
MoFEMErrorCode createFEToAssembleMatrixAndVector(boost::function< double(const double, const double, const double)> f_u, boost::function< double(const double, const double, const double)> f_source, boost::shared_ptr< ForcesAndSourcesCore > &domain_lhs_fe, boost::shared_ptr< ForcesAndSourcesCore > &boundary_lhs_fe, boost::shared_ptr< ForcesAndSourcesCore > &domain_rhs_fe, boost::shared_ptr< ForcesAndSourcesCore > &boundary_rhs_fe, bool trans=true) const
Create finite element to calculate matrix and vectors.
Set integration rule to boundary elements.
Assemble constrains vector.