v0.14.0
Public Member Functions | Private Attributes | List of all members
OpCalculateRotationAndSpatialGradient Struct Reference

#include <users_modules/eshelbian_plasticit/src/EshelbianOperators.hpp>

Inheritance diagram for OpCalculateRotationAndSpatialGradient:
[legend]
Collaboration diagram for OpCalculateRotationAndSpatialGradient:
[legend]

Public Member Functions

 OpCalculateRotationAndSpatialGradient (boost::shared_ptr< DataAtIntegrationPts > data_ptr, double alpha_omega=0)
 
MoFEMErrorCode doWork (int side, EntityType type, EntData &data)
 Operator for linear form, usually to calculate values on right hand side. More...
 
- Public Member Functions inherited from MoFEM::VolumeElementForcesAndSourcesCore::UserDataOperator
int getNumNodes ()
 get element number of nodes More...
 
const EntityHandlegetConn ()
 get element connectivity More...
 
double getVolume () const
 element volume (linear geometry) More...
 
doublegetVolume ()
 element volume (linear geometry) More...
 
FTensor::Tensor2< double *, 3, 3 > & getJac ()
 get element Jacobian More...
 
FTensor::Tensor2< double *, 3, 3 > & getInvJac ()
 get element inverse Jacobian More...
 
VectorDoublegetCoords ()
 nodal coordinates More...
 
VolumeElementForcesAndSourcesCoregetVolumeFE () const
 return pointer to Generic Volume Finite Element object More...
 
- Public Member Functions inherited from MoFEM::ForcesAndSourcesCore::UserDataOperator
 UserDataOperator (const FieldSpace space, const char type=OPSPACE, const bool symm=true)
 
 UserDataOperator (const std::string field_name, const char type, const bool symm=true)
 
 UserDataOperator (const std::string row_field_name, const std::string col_field_name, const char type, const bool symm=true)
 
boost::shared_ptr< const NumeredEntFiniteElementgetNumeredEntFiniteElementPtr () const
 Return raw pointer to NumeredEntFiniteElement. More...
 
EntityHandle getFEEntityHandle () const
 Return finite element entity handle. More...
 
int getFEDim () const
 Get dimension of finite element. More...
 
EntityType getFEType () const
 Get dimension of finite element. More...
 
boost::weak_ptr< SideNumbergetSideNumberPtr (const int side_number, const EntityType type)
 Get the side number pointer. More...
 
EntityHandle getSideEntity (const int side_number, const EntityType type)
 Get the side entity. More...
 
int getNumberOfNodesOnElement () const
 Get the number of nodes on finite element. More...
 
MoFEMErrorCode getProblemRowIndices (const std::string filed_name, const EntityType type, const int side, VectorInt &indices) const
 Get row indices. More...
 
MoFEMErrorCode getProblemColIndices (const std::string filed_name, const EntityType type, const int side, VectorInt &indices) const
 Get col indices. More...
 
const FEMethodgetFEMethod () const
 Return raw pointer to Finite Element Method object. More...
 
int getOpType () const
 Get operator types. More...
 
void setOpType (const OpType type)
 Set operator type. More...
 
void addOpType (const OpType type)
 Add operator type. More...
 
int getNinTheLoop () const
 get number of finite element in the loop More...
 
int getLoopSize () const
 get size of elements in the loop More...
 
std::string getFEName () const
 Get name of the element. More...
 
ForcesAndSourcesCoregetPtrFE () const
 
ForcesAndSourcesCoregetSidePtrFE () const
 
ForcesAndSourcesCoregetRefinePtrFE () const
 
const PetscData::SwitchesgetDataCtx () const
 
const KspMethod::KSPContext getKSPCtx () const
 
const SnesMethod::SNESContext getSNESCtx () const
 
const TSMethod::TSContext getTSCtx () const
 
Vec getKSPf () const
 
Mat getKSPA () const
 
Mat getKSPB () const
 
Vec getSNESf () const
 
Vec getSNESx () const
 
Mat getSNESA () const
 
Mat getSNESB () const
 
Vec getTSu () const
 
Vec getTSu_t () const
 
Vec getTSu_tt () const
 
Vec getTSf () const
 
Mat getTSA () const
 
Mat getTSB () const
 
int getTSstep () const
 
double getTStime () const
 
double getTStimeStep () const
 
double getTSa () const
 
double getTSaa () const
 
MatrixDoublegetGaussPts ()
 matrix of integration (Gauss) points for Volume Element More...
 
auto getFTensor0IntegrationWeight ()
 Get integration weights. More...
 
MatrixDoublegetCoordsAtGaussPts ()
 Gauss points and weight, matrix (nb. of points x 3) More...
 
auto getFTensor1CoordsAtGaussPts ()
 Get coordinates at integration points assuming linear geometry. More...
 
double getMeasure () const
 get measure of element More...
 
doublegetMeasure ()
 get measure of element More...
 
MoFEMErrorCode loopSide (const string &fe_name, ForcesAndSourcesCore *side_fe, const size_t dim, const EntityHandle ent_for_side=0, boost::shared_ptr< Range > fe_range=nullptr, const int verb=QUIET, const LogManager::SeverityLevel sev=Sev::noisy, AdjCache *adj_cache=nullptr)
 User calls this function to loop over elements on the side of face. This function calls finite element with its operator to do calculations. More...
 
MoFEMErrorCode loopThis (const string &fe_name, ForcesAndSourcesCore *this_fe, const int verb=QUIET, const LogManager::SeverityLevel sev=Sev::noisy)
 User calls this function to loop over the same element using a different set of integration points. This function calls finite element with its operator to do calculations. More...
 
MoFEMErrorCode loopParent (const string &fe_name, ForcesAndSourcesCore *parent_fe, const int verb=QUIET, const LogManager::SeverityLevel sev=Sev::noisy)
 User calls this function to loop over parent elements. This function calls finite element with its operator to do calculations. More...
 
MoFEMErrorCode loopChildren (const string &fe_name, ForcesAndSourcesCore *child_fe, const int verb=QUIET, const LogManager::SeverityLevel sev=Sev::noisy)
 User calls this function to loop over parent elements. This function calls finite element with its operator to do calculations. More...
 
- Public Member Functions inherited from MoFEM::DataOperator
 DataOperator (const bool symm=true)
 
virtual ~DataOperator ()=default
 
virtual MoFEMErrorCode doWork (int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)
 Operator for bi-linear form, usually to calculate values on left hand side. More...
 
virtual MoFEMErrorCode opLhs (EntitiesFieldData &row_data, EntitiesFieldData &col_data)
 
virtual MoFEMErrorCode opRhs (EntitiesFieldData &data, const bool error_if_no_base=false)
 
bool getSymm () const
 Get if operator uses symmetry of DOFs or not. More...
 
void setSymm ()
 set if operator is executed taking in account symmetry More...
 
void unSetSymm ()
 unset if operator is executed for non symmetric problem More...
 

Private Attributes

boost::shared_ptr< DataAtIntegrationPtsdataAtPts
 data at integration pts More...
 
double alphaOmega
 

Additional Inherited Members

- Public Types inherited from MoFEM::ForcesAndSourcesCore::UserDataOperator
enum  OpType {
  OPROW = 1 << 0, OPCOL = 1 << 1, OPROWCOL = 1 << 2, OPSPACE = 1 << 3,
  OPLAST = 1 << 3
}
 Controls loop over entities on element. More...
 
using AdjCache = std::map< EntityHandle, std::vector< boost::weak_ptr< NumeredEntFiniteElement > >>
 
- Public Types inherited from MoFEM::DataOperator
using DoWorkLhsHookFunType = boost::function< MoFEMErrorCode(DataOperator *op_ptr, int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)>
 
using DoWorkRhsHookFunType = boost::function< MoFEMErrorCode(DataOperator *op_ptr, int side, EntityType type, EntitiesFieldData::EntData &data)>
 
- Public Attributes inherited from MoFEM::ForcesAndSourcesCore::UserDataOperator
char opType
 
std::string rowFieldName
 
std::string colFieldName
 
FieldSpace sPace
 
- Public Attributes inherited from MoFEM::DataOperator
DoWorkLhsHookFunType doWorkLhsHook
 
DoWorkRhsHookFunType doWorkRhsHook
 
bool sYmm
 If true assume that matrix is symmetric structure. More...
 
std::array< bool, MBMAXTYPE > doEntities
 If true operator is executed for entity. More...
 
booldoVertices
 \deprectaed If false skip vertices More...
 
booldoEdges
 \deprectaed If false skip edges More...
 
booldoQuads
 \deprectaed More...
 
booldoTris
 \deprectaed More...
 
booldoTets
 \deprectaed More...
 
booldoPrisms
 \deprectaed More...
 
- Static Public Attributes inherited from MoFEM::ForcesAndSourcesCore::UserDataOperator
static const char *const OpTypeNames []
 
- Protected Member Functions inherited from MoFEM::VolumeElementForcesAndSourcesCore::UserDataOperator
MoFEMErrorCode setPtrFE (ForcesAndSourcesCore *ptr)
 
- Protected Attributes inherited from MoFEM::ForcesAndSourcesCore::UserDataOperator
ForcesAndSourcesCoreptrFE
 

Detailed Description

Examples
EshelbianPlasticity.cpp.

Definition at line 173 of file EshelbianOperators.hpp.

Constructor & Destructor Documentation

◆ OpCalculateRotationAndSpatialGradient()

OpCalculateRotationAndSpatialGradient::OpCalculateRotationAndSpatialGradient ( boost::shared_ptr< DataAtIntegrationPts data_ptr,
double  alpha_omega = 0 
)
inline

Definition at line 175 of file EshelbianOperators.hpp.

178  alphaOmega(alpha_omega) {}

Member Function Documentation

◆ doWork()

MoFEMErrorCode OpCalculateRotationAndSpatialGradient::doWork ( int  side,
EntityType  type,
EntData data 
)
virtual

Operator for linear form, usually to calculate values on right hand side.

Reimplemented from MoFEM::DataOperator.

Examples
EshelbianOperators.cpp.

Definition at line 55 of file EshelbianOperators.cpp.

57  {
59 
60  auto ts_ctx = getTSCtx();
61  int nb_integration_pts = getGaussPts().size2();
62 
63  // space size indices
71 
72  // sym size indices
74 
75  auto t_L = symm_L_tensor();
76 
77  dataAtPts->hAtPts.resize(9, nb_integration_pts, false);
78  dataAtPts->hdOmegaAtPts.resize(9 * 3, nb_integration_pts, false);
79  dataAtPts->hdLogStretchAtPts.resize(9 * 6, nb_integration_pts, false);
80 
81  dataAtPts->leviKirchhoffAtPts.resize(3, nb_integration_pts, false);
82  dataAtPts->leviKirchhoffdOmegaAtPts.resize(9, nb_integration_pts, false);
83  dataAtPts->leviKirchhoffdLogStreatchAtPts.resize(3 * size_symm,
84  nb_integration_pts, false);
85  dataAtPts->leviKirchhoffPAtPts.resize(9 * 3, nb_integration_pts, false);
86 
87  dataAtPts->adjointPdstretchAtPts.resize(9, nb_integration_pts, false);
88  dataAtPts->adjointPdUAtPts.resize(size_symm, nb_integration_pts, false);
89  dataAtPts->adjointPdUdPAtPts.resize(9 * size_symm, nb_integration_pts, false);
90  dataAtPts->adjointPdUdOmegaAtPts.resize(3 * size_symm, nb_integration_pts,
91  false);
92  dataAtPts->rotMatAtPts.resize(9, nb_integration_pts, false);
93  dataAtPts->stretchTensorAtPts.resize(6, nb_integration_pts, false);
94  dataAtPts->diffStretchTensorAtPts.resize(36, nb_integration_pts, false);
95  dataAtPts->eigenVals.resize(3, nb_integration_pts, false);
96  dataAtPts->eigenVecs.resize(9, nb_integration_pts, false);
97  dataAtPts->nbUniq.resize(nb_integration_pts, false);
98 
99  dataAtPts->logStretch2H1AtPts.resize(6, nb_integration_pts, false);
100  dataAtPts->logStretchTotalTensorAtPts.resize(6, nb_integration_pts, false);
101 
102  // Calculated values
103  auto t_h = getFTensor2FromMat<3, 3>(dataAtPts->hAtPts);
104  auto t_h_domega = getFTensor3FromMat<3, 3, 3>(dataAtPts->hdOmegaAtPts);
105  auto t_h_dlog_u =
106  getFTensor3FromMat<3, 3, size_symm>(dataAtPts->hdLogStretchAtPts);
107  auto t_levi_kirchhoff = getFTensor1FromMat<3>(dataAtPts->leviKirchhoffAtPts);
108  auto t_levi_kirchhoff_domega =
109  getFTensor2FromMat<3, 3>(dataAtPts->leviKirchhoffdOmegaAtPts);
110  auto t_levi_kirchhoff_dstreach = getFTensor2FromMat<3, size_symm>(
111  dataAtPts->leviKirchhoffdLogStreatchAtPts);
112  auto t_levi_kirchhoff_dP =
113  getFTensor3FromMat<3, 3, 3>(dataAtPts->leviKirchhoffPAtPts);
114  auto t_approx_P_adjoint_dstretch =
115  getFTensor2FromMat<3, 3>(dataAtPts->adjointPdstretchAtPts);
116  auto t_approx_P_adjoint_log_du =
117  getFTensor1FromMat<size_symm>(dataAtPts->adjointPdUAtPts);
118  auto t_approx_P_adjoint_log_du_dP =
119  getFTensor3FromMat<3, 3, size_symm>(dataAtPts->adjointPdUdPAtPts);
120  auto t_approx_P_adjoint_log_du_domega =
121  getFTensor2FromMat<3, size_symm>(dataAtPts->adjointPdUdOmegaAtPts);
122  auto t_R = getFTensor2FromMat<3, 3>(dataAtPts->rotMatAtPts);
123  auto t_u = getFTensor2SymmetricFromMat<3>(dataAtPts->stretchTensorAtPts);
124  auto t_diff_u =
125  getFTensor4DdgFromMat<3, 3, 1>(dataAtPts->diffStretchTensorAtPts);
126  auto t_eigen_vals = getFTensor1FromMat<3>(dataAtPts->eigenVals);
127  auto t_eigen_vecs = getFTensor2FromMat<3, 3>(dataAtPts->eigenVecs);
128  auto t_log_stretch_total =
129  getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTotalTensorAtPts);
130  auto t_log_u2_h1 =
131  getFTensor2SymmetricFromMat<3>(dataAtPts->logStretch2H1AtPts);
132  auto &nbUniq = dataAtPts->nbUniq;
133  auto t_nb_uniq =
134  FTensor::Tensor0<FTensor::PackPtr<int *, 1>>(nbUniq.data().data());
135 
136  // Field values
137  auto t_grad_h1 = getFTensor2FromMat<3, 3>(dataAtPts->wGradH1AtPts);
138  auto t_omega = getFTensor1FromMat<3>(dataAtPts->rotAxisAtPts);
139  auto t_approx_P = getFTensor2FromMat<3, 3>(dataAtPts->approxPAtPts);
140  auto t_log_u =
141  getFTensor2SymmetricFromMat<3>(dataAtPts->logStretchTensorAtPts);
142 
143  auto next = [&]() {
144  // calculated values
145  ++t_h;
146  ++t_h_domega;
147  ++t_h_dlog_u;
148  ++t_levi_kirchhoff;
149  ++t_levi_kirchhoff_domega;
150  ++t_levi_kirchhoff_dstreach;
151  ++t_levi_kirchhoff_dP;
152  ++t_approx_P_adjoint_dstretch;
153  ++t_approx_P_adjoint_log_du;
154  ++t_approx_P_adjoint_log_du_dP;
155  ++t_approx_P_adjoint_log_du_domega;
156  ++t_R;
157  ++t_u;
158  ++t_diff_u;
159  ++t_eigen_vals;
160  ++t_eigen_vecs;
161  ++t_nb_uniq;
162  ++t_log_u2_h1;
163  ++t_log_stretch_total;
164  // field values
165  ++t_omega;
166  ++t_grad_h1;
167  ++t_approx_P;
168  ++t_log_u;
169  };
170 
173 
174  auto bound_eig = [&](auto &eig) {
176  const auto zero = std::exp(std::numeric_limits<double>::min_exponent);
177  const auto large = std::exp(std::numeric_limits<double>::max_exponent);
178  for (int ii = 0; ii != 3; ++ii) {
179  eig(ii) = std::min(std::max(zero, eig(ii)), large);
180  }
182  };
183 
184  auto calculate_log_stretch = [&]() {
187  eigen_vec(i, j) = t_log_u(i, j);
188  if (computeEigenValuesSymmetric(eigen_vec, eig) != MB_SUCCESS) {
189  MOFEM_LOG("SELF", Sev::error) << "Failed to compute eigen values";
190  }
191  // CHKERR bound_eig(eig);
192  // rare case when two eigen values are equal
193  t_nb_uniq = get_uniq_nb<3>(&eig(0));
194  if (t_nb_uniq < 3) {
195  sort_eigen_vals(eig, eigen_vec);
196  }
197  t_eigen_vals(i) = eig(i);
198  t_eigen_vecs(i, j) = eigen_vec(i, j);
199  t_u(i, j) =
200  EigenMatrix::getMat(t_eigen_vals, t_eigen_vecs, EshelbianCore::f)(i, j);
201  auto get_t_diff_u = [&]() {
202  return EigenMatrix::getDiffMat(t_eigen_vals, t_eigen_vecs,
204  t_nb_uniq);
205  };
206  t_diff_u(i, j, k, l) = get_t_diff_u()(i, j, k, l);
208  t_Ldiff_u(i, j, L) = t_diff_u(i, j, m, n) * t_L(m, n, L);
209  return t_Ldiff_u;
210  };
211 
212  auto calculate_total_stretch = [&](auto &t_h1) {
214 
215  t_log_u2_h1(i, j) = 0;
216  t_log_stretch_total(i, j) = t_log_u(i, j);
217 
220  t_R_h1(i, j) = t_kd(i, j);
221  t_inv_u_h1(i, j) = t_symm_kd(i, j);
222 
223  return std::make_pair(t_R_h1, t_inv_u_h1);
224 
225  } else {
226 
229 
231  t_C_h1(i, j) = t_h1(k, i) * t_h1(k, j);
232  eigen_vec(i, j) = t_C_h1(i, j);
233  if (computeEigenValuesSymmetric(eigen_vec, eig) != MB_SUCCESS) {
234  MOFEM_LOG("SELF", Sev::error) << "Failed to compute eigen values";
235  }
236 
238  CHKERR bound_eig(eig);
239  }
240 
241  t_log_u2_h1(i, j) =
242  EigenMatrix::getMat(eig, eigen_vec, EshelbianCore::inv_f)(i, j);
243  t_log_stretch_total(i, j) = t_log_u2_h1(i, j) / 2 + t_log_u(i, j);
244 
245  auto f_inv_sqrt = [](auto e) { return 1. / std::sqrt(e); };
247  t_inv_u_h1(i, j) = EigenMatrix::getMat(eig, eigen_vec, f_inv_sqrt)(i, j);
249  t_R_h1(i, j) = t_h1(i, o) * t_inv_u_h1(o, j);
250 
251  return std::make_pair(t_R_h1, t_inv_u_h1);
252  }
253  };
254 
255  auto no_h1_loop = [&]() {
257 
258  switch (EshelbianCore::rotSelector) {
259  case LARGE_ROT:
260  break;
261  case SMALL_ROT:
262  break;
263  default:
264  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
265  "rotSelector should be large");
266  };
267 
268  for (int gg = 0; gg != nb_integration_pts; ++gg) {
269 
271 
273  t_h1(i, j) = t_kd(i, j);
274 
275  // calculate streach
276  auto t_Ldiff_u = calculate_log_stretch();
277 
278  // calculate total stretch
279  auto [t_R_h1, t_inv_u_h1] = calculate_total_stretch(t_h1);
280 
285 
287 
288  // rotation
289  switch (EshelbianCore::rotSelector) {
290  case LARGE_ROT:
291  t_R(i, j) = LieGroups::SO3::exp(t_omega, t_omega.l2())(i, j);
292  t_diff_R(i, j, k) =
293  LieGroups::SO3::diffExp(t_omega, t_omega.l2())(i, j, k);
294  // left
295  t_diff_Rr(i, j, l) = t_R(i, k) * levi_civita(k, j, l);
296  t_diff_diff_Rr(i, j, l, m) = t_diff_R(i, k, m) * levi_civita(k, j, l);
297  // right
298  t_diff_Rl(i, j, l) = levi_civita(i, k, l) * t_R(k, j);
299  t_diff_diff_Rl(i, j, l, m) = levi_civita(i, k, l) * t_diff_R(k, j, m);
300  break;
301 
302  default:
303  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
304  "rotationSelector not handled");
305  }
306 
307  constexpr double half_r = 1 / 2.;
308  constexpr double half_l = 1 / 2.;
309 
310  // calculate gradient
311  t_h(i, k) = t_R(i, l) * t_u(l, k);
312 
313  // Adjoint stress
314  t_approx_P_adjoint_dstretch(l, k) =
315  (t_R(i, l) * t_approx_P(i, k) + t_R(i, k) * t_approx_P(i, l));
316  t_approx_P_adjoint_dstretch(l, k) /= 2.;
317 
318  t_approx_P_adjoint_log_du(L) =
319  t_approx_P_adjoint_dstretch(l, k) * t_Ldiff_u(l, k, L);
320 
321  // Kirchhoff stress
322  t_levi_kirchhoff(m) =
323 
324  half_r * (t_diff_Rr(i, l, m) * (t_u(l, k) * t_approx_P(i, k)) +
325  t_diff_Rr(i, k, m) * (t_u(l, k) * t_approx_P(i, l)))
326 
327  +
328 
329  half_l * (t_diff_Rl(i, l, m) * (t_u(l, k) * t_approx_P(i, k)) +
330  t_diff_Rl(i, k, m) * (t_u(l, k) * t_approx_P(i, l)));
331  t_levi_kirchhoff(m) /= 2.;
332 
333  if (ts_ctx == TSMethod::CTX_TSSETIJACOBIAN) {
334 
336  t_h_domega(i, k, m) = half_r * (t_diff_Rr(i, l, m) * t_u(l, k))
337 
338  +
339 
340  half_l * (t_diff_Rl(i, l, m) * t_u(l, k));
341  } else {
342  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
343  "symmetrySelector not handled");
344  }
345 
346  t_h_dlog_u(i, k, L) = t_R(i, l) * t_Ldiff_u(l, k, L);
347 
348  t_approx_P_adjoint_log_du_dP(i, k, L) = t_R(i, l) * t_Ldiff_u(l, k, L);
349 
351  t_A(k, l, m) = t_diff_Rr(i, l, m) * t_approx_P(i, k) +
352  t_diff_Rr(i, k, m) * t_approx_P(i, l);
353  t_A(k, l, m) /= 2.;
355  t_B(k, l, m) = t_diff_Rl(i, l, m) * t_approx_P(i, k) +
356  t_diff_Rl(i, k, m) * t_approx_P(i, l);
357  t_B(k, l, m) /= 2.;
358 
359  t_approx_P_adjoint_log_du_domega(m, L) =
360  half_r * (t_A(k, l, m) * t_Ldiff_u(k, l, L)) +
361  half_l * (t_B(k, l, m) * t_Ldiff_u(k, l, L));
362 
363  t_levi_kirchhoff_domega(m, n) =
364  half_r *
365  (t_diff_diff_Rr(i, l, m, n) * (t_u(l, k) * t_approx_P(i, k)) +
366  t_diff_diff_Rr(i, k, m, n) * (t_u(l, k) * t_approx_P(i, l)))
367 
368  +
369 
370  half_l *
371  (t_diff_diff_Rl(i, l, m, n) * (t_u(l, k) * t_approx_P(i, k)) +
372  t_diff_diff_Rl(i, k, m, n) * (t_u(l, k) * t_approx_P(i, l)));
373  t_levi_kirchhoff_domega(m, n) /= 2.;
374  }
375 
376  next();
377  }
378 
380  };
381 
382  auto large_loop = [&]() {
384 
385  switch (EshelbianCore::rotSelector) {
386  case LARGE_ROT:
387  break;
388  case SMALL_ROT:
389  break;
390  default:
391  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
392  "rotSelector should be large");
393  };
394 
395  for (int gg = 0; gg != nb_integration_pts; ++gg) {
396 
398 
401  case NO_H1_CONFIGURATION:
402  t_h1(i, j) = t_kd(i, j);
403  break;
404  case LARGE_ROT:
405  t_h1(i, j) = t_grad_h1(i, j) + t_kd(i, j);
406  break;
407  default:
408  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
409  "gradApproximator not handled");
410  };
411 
412  // calculate streach
413  auto t_Ldiff_u = calculate_log_stretch();
414  // calculate total stretch
415  auto [t_R_h1, t_inv_u_h1] = calculate_total_stretch(t_h1);
416 
418  t_h_u(l, k) = t_u(l, o) * t_h1(o, k);
420  t_Ldiff_h_u(l, k, L) = t_Ldiff_u(l, o, L) * t_h1(o, k);
421 
426 
428 
429  // rotation
430  switch (EshelbianCore::rotSelector) {
431  case LARGE_ROT:
432  t_R(i, j) = LieGroups::SO3::exp(t_omega, t_omega.l2())(i, j);
433  t_diff_R(i, j, k) =
434  LieGroups::SO3::diffExp(t_omega, t_omega.l2())(i, j, k);
435  // left
436  t_diff_Rr(i, j, l) = t_R(i, k) * levi_civita(k, j, l);
437  t_diff_diff_Rr(i, j, l, m) = t_diff_R(i, k, m) * levi_civita(k, j, l);
438  // right
439  t_diff_Rl(i, j, l) = levi_civita(i, k, l) * t_R(k, j);
440  t_diff_diff_Rl(i, j, l, m) = levi_civita(i, k, l) * t_diff_R(k, j, m);
441  break;
442  case SMALL_ROT:
443  t_R(i, k) = t_kd(i, k) + levi_civita(i, k, l) * t_omega(l);
444  t_diff_R(i, j, k) = levi_civita(i, j, k);
445  // left
446  t_diff_Rr(i, j, l) = levi_civita(i, j, l);
447  t_diff_diff_Rr(i, j, l, m) = 0;
448  // right
449  t_diff_Rl(i, j, l) = levi_civita(i, j, l);
450  t_diff_diff_Rl(i, j, l, m) = 0;
451  break;
452 
453  default:
454  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
455  "rotationSelector not handled");
456  }
457 
458  constexpr double half_r = 1 / 2.;
459  constexpr double half_l = 1 / 2.;
460 
461  // calculate gradient
462  t_h(i, k) = t_R(i, l) * t_h_u(l, k);
463 
464  // Adjoint stress
465  t_approx_P_adjoint_dstretch(l, o) =
466  (t_R(i, l) * t_approx_P(i, k)) * t_h1(o, k);
467  t_approx_P_adjoint_log_du(L) =
468  t_approx_P_adjoint_dstretch(l, o) * t_Ldiff_u(l, o, L);
469 
470  // Kirchhoff stress
471  t_levi_kirchhoff(m) =
472 
473  half_r * ((t_diff_Rr(i, l, m) * (t_h_u(l, k))*t_approx_P(i, k)))
474 
475  +
476 
477  half_l * ((t_diff_Rl(i, l, m) * (t_h_u(l, k))*t_approx_P(i, k)));
478 
479  if (ts_ctx == TSMethod::CTX_TSSETIJACOBIAN) {
480 
482  t_h_domega(i, k, m) = half_r * (t_diff_Rr(i, l, m) * t_h_u(l, k))
483 
484  +
485 
486  half_l * (t_diff_Rl(i, l, m) * t_h_u(l, k));
487  } else {
488  t_h_domega(i, k, m) = t_diff_R(i, l, m) * t_h_u(l, k);
489  }
490 
491  t_h_dlog_u(i, k, L) = t_R(i, l) * t_Ldiff_h_u(l, k, L);
492 
493  t_approx_P_adjoint_log_du_dP(i, k, L) =
494  t_R(i, l) * t_Ldiff_h_u(l, k, L);
495 
498  t_A(m, L, i, k) = t_diff_Rr(i, l, m) * t_Ldiff_h_u(l, k, L);
500  t_B(m, L, i, k) = t_diff_Rl(i, l, m) * t_Ldiff_h_u(l, k, L);
501 
502  t_approx_P_adjoint_log_du_domega(m, L) =
503  half_r * (t_A(m, L, i, k) * t_approx_P(i, k))
504 
505  +
506 
507  half_l * (t_B(m, L, i, k) * t_approx_P(i, k));
508  } else {
510  t_A(m, L, i, k) = t_diff_R(i, l, m) * t_Ldiff_h_u(l, k, L);
511  t_approx_P_adjoint_log_du_domega(m, L) =
512  t_A(m, L, i, k) * t_approx_P(i, k);
513  }
514 
515  t_levi_kirchhoff_dstreach(m, L) =
516  half_r *
517  (t_diff_Rr(i, l, m) * (t_Ldiff_h_u(l, k, L) * t_approx_P(i, k)))
518 
519  +
520 
521  half_l * (t_diff_Rl(i, l, m) *
522  (t_Ldiff_h_u(l, k, L) * t_approx_P(i, k)));
523 
524  t_levi_kirchhoff_dP(m, i, k) =
525 
526  half_r * (t_diff_Rr(i, l, m) * t_h_u(l, k))
527 
528  +
529 
530  half_l * (t_diff_Rl(i, l, m) * t_h_u(l, k));
531 
532  t_levi_kirchhoff_domega(m, n) =
533  half_r *
534  (t_diff_diff_Rr(i, l, m, n) * (t_h_u(l, k) * t_approx_P(i, k)))
535 
536  +
537 
538  half_l *
539  (t_diff_diff_Rl(i, l, m, n) * (t_h_u(l, k) * t_approx_P(i, k)));
540  }
541 
542  next();
543  }
544 
546  };
547 
548  auto moderate_loop = [&]() {
550 
551  switch (EshelbianCore::rotSelector) {
552  case LARGE_ROT:
553  break;
554  case SMALL_ROT:
555  break;
556  default:
557  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
558  "rotSelector should be large");
559  };
560 
561  for (int gg = 0; gg != nb_integration_pts; ++gg) {
562 
564 
567  case MODERATE_ROT:
568  t_h1(i, j) = t_grad_h1(i, j) + t_kd(i, j);
569  break;
570  default:
571  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
572  "gradApproximator not handled");
573  };
574 
575  // calculate streach
576  auto t_Ldiff_u = calculate_log_stretch();
577  // calculate total stretch
578  auto [t_R_h1, t_inv_u_h1] = calculate_total_stretch(t_h1);
579 
581  t_h_u(l, k) = (t_symm_kd(l, o) + t_log_u(l, o)) * t_h1(o, k);
583  t_L_h(l, k, L) = t_L(l, o, L) * t_h1(o, k);
584 
589 
591 
592  // rotation
593  switch (EshelbianCore::rotSelector) {
594  case LARGE_ROT:
595  t_R(i, j) = LieGroups::SO3::exp(t_omega, t_omega.l2())(i, j);
596  t_diff_R(i, j, k) =
597  LieGroups::SO3::diffExp(t_omega, t_omega.l2())(i, j, k);
598  // left
599  t_diff_Rr(i, j, l) = t_R(i, k) * levi_civita(k, j, l);
600  t_diff_diff_Rr(i, j, l, m) = t_diff_R(i, k, m) * levi_civita(k, j, l);
601  // right
602  t_diff_Rl(i, j, l) = levi_civita(i, k, l) * t_R(k, j);
603  t_diff_diff_Rl(i, j, l, m) = levi_civita(i, k, l) * t_diff_R(k, j, m);
604  break;
605  case SMALL_ROT:
606  t_R(i, k) = t_kd(i, k) + levi_civita(i, k, l) * t_omega(l);
607  t_diff_R(i, j, l) = levi_civita(i, j, l);
608  // left
609  t_diff_Rr(i, j, l) = levi_civita(i, j, l);
610  t_diff_diff_Rr(i, j, l, m) = 0;
611  // right
612  t_diff_Rl(i, j, l) = levi_civita(i, j, l);
613  t_diff_diff_Rl(i, j, l, m) = 0;
614  break;
615 
616  default:
617  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
618  "rotationSelector not handled");
619  }
620 
621  constexpr double half_r = 1 / 2.;
622  constexpr double half_l = 1 / 2.;
623 
624  // calculate gradient
625  t_h(i, k) = t_R(i, l) * t_h_u(l, k);
626 
627  // Adjoint stress
628  t_approx_P_adjoint_dstretch(l, o) =
629  (t_R(i, l) * t_approx_P(i, k)) * t_h1(o, k);
630 
631  t_approx_P_adjoint_log_du(L) =
632  t_approx_P_adjoint_dstretch(l, o) * t_L(l, o, L);
633 
634  // Kirchhoff stress
635  t_levi_kirchhoff(m) =
636 
637  half_r * ((t_diff_Rr(i, l, m) * (t_h_u(l, k))*t_approx_P(i, k)))
638 
639  +
640 
641  half_l * ((t_diff_Rl(i, l, m) * (t_h_u(l, k))*t_approx_P(i, k)));
642 
643  if (ts_ctx == TSMethod::CTX_TSSETIJACOBIAN) {
644 
646  t_h_domega(i, k, m) = half_r * (t_diff_Rr(i, l, m) * t_h_u(l, k))
647 
648  +
649 
650  half_l * (t_diff_Rl(i, l, m) * t_h_u(l, k));
651  } else {
652  t_h_domega(i, k, m) = t_diff_R(i, l, m) * t_h_u(l, k);
653  }
654 
655  t_h_dlog_u(i, k, L) = t_R(i, l) * t_L_h(l, k, L);
656 
657  t_approx_P_adjoint_log_du_dP(i, k, L) = t_R(i, l) * t_L_h(l, k, L);
658 
661  t_A(m, L, i, k) = t_diff_Rr(i, l, m) * t_L_h(l, k, L);
663  t_B(m, L, i, k) = t_diff_Rl(i, l, m) * t_L_h(l, k, L);
664  t_approx_P_adjoint_log_du_domega(m, L) =
665  half_r * (t_A(m, L, i, k) * t_approx_P(i, k))
666 
667  +
668 
669  half_l * (t_B(m, L, i, k) * t_approx_P(i, k));
670  } else {
672  t_A(m, L, i, k) = t_diff_R(i, l, m) * t_L_h(l, k, L);
673  t_approx_P_adjoint_log_du_domega(m, L) =
674  t_A(m, L, i, k) * t_approx_P(i, k);
675  }
676 
677  t_levi_kirchhoff_dstreach(m, L) =
678  half_r * (t_diff_Rr(i, l, m) * (t_L_h(l, k, L) * t_approx_P(i, k)))
679 
680  +
681 
682  half_l * (t_diff_Rl(i, l, m) * (t_L_h(l, k, L) * t_approx_P(i, k)));
683 
684  t_levi_kirchhoff_dP(m, i, k) =
685 
686  half_r * (t_diff_Rr(i, l, m) * t_h_u(l, k))
687 
688  +
689 
690  half_l * (t_diff_Rl(i, l, m) * t_h_u(l, k));
691 
692  t_levi_kirchhoff_domega(m, n) =
693  half_r *
694  (t_diff_diff_Rr(i, l, m, n) * (t_h_u(l, k) * t_approx_P(i, k)))
695 
696  +
697 
698  half_l *
699  (t_diff_diff_Rl(i, l, m, n) * (t_h_u(l, k) * t_approx_P(i, k)));
700  }
701 
702  next();
703  }
704 
706  };
707 
708  auto small_loop = [&]() {
710  switch (EshelbianCore::rotSelector) {
711  case SMALL_ROT:
712  break;
713  default:
714  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
715  "rotSelector should be small");
716  };
717 
718  for (int gg = 0; gg != nb_integration_pts; ++gg) {
719 
722  case SMALL_ROT:
723  t_h1(i, j) = t_kd(i, j);
724  break;
725  default:
726  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
727  "gradApproximator not handled");
728  };
729 
730  // calculate streach
732 
734  t_Ldiff_u(i, j, L) = calculate_log_stretch()(i, j, L);
735  } else {
736  t_u(i, j) = t_symm_kd(i, j) + t_log_u(i, j);
737  t_Ldiff_u(i, j, L) = t_L(i, j, L);
738  }
739  t_log_u2_h1(i, j) = 0;
740  t_log_stretch_total(i, j) = t_log_u(i, j);
741 
742 
744  t_h(i, j) = levi_civita(i, j, k) * t_omega(k) + t_u(i, j);
745 
746  t_h_domega(i, j, k) = levi_civita(i, j, k);
747  t_h_dlog_u(i, j, L) = t_Ldiff_u(i, j, L);
748 
749  // Adjoint stress
750  t_approx_P_adjoint_dstretch(i, j) = t_approx_P(i, j);
751  t_approx_P_adjoint_log_du(L) =
752  t_approx_P_adjoint_dstretch(i, j) * t_Ldiff_u(i, j, L);
753  t_approx_P_adjoint_log_du_dP(i, j, L) = t_Ldiff_u(i, j, L);
754  t_approx_P_adjoint_log_du_domega(m, L) = 0;
755 
756  // Kirchhoff stress
757  t_levi_kirchhoff(k) = levi_civita(i, j, k) * t_approx_P(i, j);
758  t_levi_kirchhoff_dstreach(m, L) = 0;
759  t_levi_kirchhoff_dP(k, i, j) = levi_civita(i, j, k);
760  t_levi_kirchhoff_domega(m, n) = 0;
761 
762  next();
763  }
764 
766  };
767 
769  case NO_H1_CONFIGURATION:
770  CHKERR no_h1_loop();
771  break;
772  case LARGE_ROT:
773  CHKERR large_loop();
775  break;
776  case MODERATE_ROT:
777  CHKERR moderate_loop();
779  break;
780  case SMALL_ROT:
781  CHKERR small_loop();
783  break;
784  default:
785  SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
786  "gradApproximator not handled");
787  break;
788  };
789 
791 }

Member Data Documentation

◆ alphaOmega

double OpCalculateRotationAndSpatialGradient::alphaOmega
private

Definition at line 184 of file EshelbianOperators.hpp.

◆ dataAtPts

boost::shared_ptr<DataAtIntegrationPts> OpCalculateRotationAndSpatialGradient::dataAtPts
private

data at integration pts

Definition at line 183 of file EshelbianOperators.hpp.


The documentation for this struct was generated from the following files:
NOSPACE
@ NOSPACE
Definition: definitions.h:83
MoFEMFunctionReturnHot
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:460
EshelbianPlasticity::LINEAR
@ LINEAR
Definition: EshelbianPlasticity.hpp:46
MoFEM::ForcesAndSourcesCore::UserDataOperator::getTSCtx
const TSMethod::TSContext getTSCtx() const
Definition: ForcesAndSourcesCore.hpp:1085
FTensor::Tensor1< double, 3 >
MoFEM::ForcesAndSourcesCore::UserDataOperator::OPSPACE
@ OPSPACE
operator do Work is execute on space data
Definition: ForcesAndSourcesCore.hpp:570
EshelbianCore::f
static boost::function< double(const double)> f
Definition: EshelbianCore.hpp:32
EshelbianCore::stretchSelector
static enum StretchSelector stretchSelector
Definition: EshelbianCore.hpp:17
FTensor::Kronecker_Delta
Kronecker Delta class.
Definition: Kronecker_Delta.hpp:15
FTensor::Tensor2_symmetric
Definition: Tensor2_symmetric_value.hpp:13
FTENSOR_INDEX
#define FTENSOR_INDEX(DIM, I)
Definition: Templates.hpp:2013
EshelbianPlasticity::NO_H1_CONFIGURATION
@ NO_H1_CONFIGURATION
Definition: EshelbianPlasticity.hpp:45
FTensor::levi_civita
constexpr std::enable_if<(Dim0<=2 &&Dim1<=2), Tensor2_Expr< Levi_Civita< T >, T, Dim0, Dim1, i, j > >::type levi_civita(const Index< i, Dim0 > &, const Index< j, Dim1 > &)
levi_civita functions to make for easy adhoc use
Definition: Levi_Civita.hpp:617
ts_ctx
MoFEM::TsCtx * ts_ctx
Definition: level_set.cpp:1932
LieGroups::SO3::exp
static auto exp(A &&t_w_vee, B &&theta)
Definition: Lie.hpp:49
FTensor::Tensor2< double, 3, 3 >
MoFEM::ForcesAndSourcesCore::UserDataOperator::getGaussPts
MatrixDouble & getGaussPts()
matrix of integration (Gauss) points for Volume Element
Definition: ForcesAndSourcesCore.hpp:1237
EshelbianCore::gradApproximator
static enum RotSelector gradApproximator
Definition: EshelbianCore.hpp:16
EigenMatrix::getMat
auto getMat(A &&t_val, B &&t_vec, Fun< double > f)
Get the Mat object.
Definition: MatrixFunction.hpp:114
EigenMatrix::getDiffMat
auto getDiffMat(A &&t_val, B &&t_vec, Fun< double > f, Fun< double > d_f, const int nb)
Get the Diff Mat object.
Definition: MatrixFunction.hpp:166
CHKERR
#define CHKERR
Inline error check.
Definition: definitions.h:548
FTensor::Tensor3
Definition: Tensor3_value.hpp:12
EshelbianPlasticity::SYMMETRIC
@ SYMMETRIC
Definition: EshelbianPlasticity.hpp:44
SPACE_DIM
constexpr int SPACE_DIM
Definition: child_and_parent.cpp:16
LieGroups::SO3::diffExp
static auto diffExp(A &&t_w_vee, B &&theta)
Definition: Lie.hpp:80
VolUserDataOperator
VolumeElementForcesAndSourcesCore::UserDataOperator VolUserDataOperator
Definition: elasticity.cpp:76
MoFEM::L
VectorDouble L
Definition: Projection10NodeCoordsOnField.cpp:124
FTensor::Tensor4
Definition: Tensor4_value.hpp:18
size_symm
constexpr auto size_symm
Definition: plastic.cpp:42
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
t_kd
constexpr auto t_kd
Definition: free_surface.cpp:139
EshelbianCore::symmetrySelector
static enum SymmetrySelector symmetrySelector
Definition: EshelbianCore.hpp:14
convert.n
n
Definition: convert.py:82
OpCalculateRotationAndSpatialGradient::alphaOmega
double alphaOmega
Definition: EshelbianOperators.hpp:184
OpCalculateRotationAndSpatialGradient::dataAtPts
boost::shared_ptr< DataAtIntegrationPts > dataAtPts
data at integration pts
Definition: EshelbianOperators.hpp:183
HenckyOps::sort_eigen_vals
auto sort_eigen_vals(FTensor::Tensor1< double, DIM > &eig, FTensor::Tensor2< double, DIM, DIM > &eigen_vec)
Definition: HenckyOps.hpp:41
EshelbianPlasticity::SMALL_ROT
@ SMALL_ROT
Definition: EshelbianPlasticity.hpp:45
MOFEM_LOG
#define MOFEM_LOG(channel, severity)
Log.
Definition: LogManager.hpp:308
EshelbianPlasticity::LARGE_ROT
@ LARGE_ROT
Definition: EshelbianPlasticity.hpp:45
FTensor::Tensor0
Definition: Tensor0.hpp:16
EshelbianPlasticity::LOG
@ LOG
Definition: EshelbianPlasticity.hpp:46
PlasticOps::symm_L_tensor
auto symm_L_tensor(FTensor::Number< DIM >)
Definition: PlasticOpsGeneric.hpp:21
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
EshelbianCore::inv_f
static boost::function< double(const double)> inv_f
Definition: EshelbianCore.hpp:35
MOFEM_DATA_INCONSISTENCY
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:31
m
FTensor::Index< 'm', 3 > m
Definition: shallow_wave.cpp:80
EshelbianCore::rotSelector
static enum RotSelector rotSelector
Definition: EshelbianCore.hpp:15
FTensor::Kronecker_Delta_symmetric
Kronecker Delta class symmetric.
Definition: Kronecker_Delta.hpp:49
EshelbianPlasticity::MODERATE_ROT
@ MODERATE_ROT
Definition: EshelbianPlasticity.hpp:45
k
FTensor::Index< 'k', 3 > k
Definition: matrix_function.cpp:20
MoFEMFunctionReturn
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:429
MoFEMFunctionBegin
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:359
l
FTensor::Index< 'l', 3 > l
Definition: matrix_function.cpp:21
MoFEM::computeEigenValuesSymmetric
MoFEMErrorCode computeEigenValuesSymmetric(const MatrixDouble &mat, VectorDouble &eig, MatrixDouble &eigen_vec)
compute eigenvalues of a symmetric matrix using lapack dsyev
Definition: Templates.hpp:1452
EshelbianCore::d_f
static boost::function< double(const double)> d_f
Definition: EshelbianCore.hpp:33