v0.14.0
wave_equation.cpp

Solve the time-dependent Wave Equation

\[ \begin{aligned} \frac{\partial u(\mathbf{x}, t)}{\partial t}-\Delta u(\mathbf{x}, t) &=f(\mathbf{x}, t) & & \forall \mathbf{x} \in \Omega, t \in(0, T), \\ u(\mathbf{x}, 0) &=u_{0}(\mathbf{x}) & & \forall \mathbf{x} \in \Omega, \\ u(\mathbf{x}, t) &=g(\mathbf{x}, t) & & \forall \mathbf{x} \in \partial \Omega, t \in(0, T). \end{aligned} \]

/**
* \file wave_equation.cpp
* \example wave_equation.cpp
*
* \brief Solve the time-dependent Wave Equation
\f[
\begin{aligned}
\frac{\partial u(\mathbf{x}, t)}{\partial t}-\Delta u(\mathbf{x}, t)
&=f(\mathbf{x}, t) & & \forall \mathbf{x} \in \Omega, t \in(0, T), \\
u(\mathbf{x}, 0) &=u_{0}(\mathbf{x}) & & \forall \mathbf{x} \in \Omega, \\
u(\mathbf{x}, t) &=g(\mathbf{x}, t) & & \forall \mathbf{x} \in \partial \Omega,
t \in(0, T). \end{aligned}
\f]
**/
#include <stdlib.h>
#include <cmath>
using namespace MoFEM;
static char help[] = "...\n\n";
template <int DIM> struct ElementsAndOps {};
//! [Define dimension]
constexpr int SPACE_DIM = 2; //< Space dimension of problem, mesh
//! [Define dimension]
PETSC>::LinearForm<GAUSS>::OpBaseTimesScalar<1>;
PETSC>::LinearForm<GAUSS>::OpBaseTimesScalar<1>;
PETSC>::LinearForm<GAUSS>::OpSource<1, 1>;
constexpr double wave_speed2 = 1;
/**
* @brief Monitor solution
*
* This functions is called by TS solver at the end of each step. It is used
* to output results to the hard drive.
*/
struct Monitor : public FEMethod {
Monitor(SmartPetscObj<DM> dm, boost::shared_ptr<PostProcEle> post_proc)
: dM(dm), postProc(post_proc){};
MoFEMErrorCode preProcess() { return 0; }
MoFEMErrorCode operator()() { return 0; }
static constexpr int saveEveryNthStep = 1;
MoFEMErrorCode postProcess() {
if (ts_step % saveEveryNthStep == 0) {
CHKERR DMoFEMLoopFiniteElements(dM, "dFE", postProc);
CHKERR postProc->writeFile(
"out_level_" + boost::lexical_cast<std::string>(ts_step) + ".h5m");
}
}
private:
boost::shared_ptr<PostProcEle> postProc;
};
struct WaveEquation {
public:
// Declaration of the main function to run analysis
MoFEMErrorCode runProgram();
private:
// Declaration of other main functions called in runProgram()
MoFEMErrorCode readMesh();
MoFEMErrorCode setupProblem();
MoFEMErrorCode setIntegrationRules();
MoFEMErrorCode initialCondition();
MoFEMErrorCode boundaryCondition();
MoFEMErrorCode assembleSystem();
MoFEMErrorCode solveSystem();
MoFEMErrorCode outputResults();
// Main interfaces
// Object to mark boundary entities for the assembling of domain elements
boost::shared_ptr<std::vector<unsigned char>> boundaryMarker;
};
WaveEquation::WaveEquation(MoFEM::Interface &m_field) : mField(m_field) {}
CHKERR simple->getOptions();
CHKERR simple->loadFile();
}
CHKERR simple->addDomainField("U", H1, AINSWORTH_LEGENDRE_BASE, 1);
CHKERR simple->addBoundaryField("U", H1, AINSWORTH_LEGENDRE_BASE, 1);
int order = 3;
CHKERR PetscOptionsGetInt(PETSC_NULL, "", "-order", &order, PETSC_NULL);
CHKERR simple->setFieldOrder("U", order);
CHKERR simple->setUp();
}
auto integration_rule = [](int o_row, int o_col, int approx_order) {
return 2 * approx_order;
};
auto *pipeline_mng = mField.getInterface<PipelineManager>();
CHKERR pipeline_mng->setDomainRhsIntegrationRule(integration_rule);
CHKERR pipeline_mng->setDomainLhsIntegrationRule(integration_rule);
CHKERR pipeline_mng->setBoundaryLhsIntegrationRule(integration_rule);
CHKERR pipeline_mng->setBoundaryRhsIntegrationRule(integration_rule);
}
}
auto bc_mng = mField.getInterface<BcManager>();
CHKERR bc_mng->pushMarkDOFsOnEntities(simple->getProblemName(), "ESSENTIAL",
"U", 0, 0);
auto &bc_map = bc_mng->getBcMapByBlockName();
boundaryMarker = boost::make_shared<std::vector<char unsigned>>();
for (auto b : bc_map) {
if (std::regex_match(b.first, std::regex("(.*)ESSENTIAL(.*)"))) {
boundaryMarker->resize(b.second->bcMarkers.size(), 0);
for (int i = 0; i != b.second->bcMarkers.size(); ++i) {
(*boundaryMarker)[i] |= b.second->bcMarkers[i];
}
}
}
}
auto add_domain_base_ops = [&](auto &pipeline) {
auto det_ptr = boost::make_shared<VectorDouble>();
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
pipeline.push_back(new OpCalculateHOJac<2>(jac_ptr));
pipeline.push_back(new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
pipeline.push_back(new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
pipeline.push_back(new OpSetHOWeightsOnFace());
};
auto add_domain_lhs_ops = [&](auto &pipeline) {
pipeline.push_back(new OpSetBc("U", true, boundaryMarker));
pipeline.push_back(new OpDomainGradGrad(
"U", "U", [](double, double, double) -> double { return 1; }));
auto get_c = [this](const double, const double, const double) {
auto pipeline_mng = mField.getInterface<PipelineManager>();
auto &fe_domain_lhs = pipeline_mng->getDomainLhsFE();
return wave_speed2 * fe_domain_lhs->ts_aa;
};
pipeline.push_back(new OpDomainMass("U", "U", get_c));
pipeline.push_back(new OpUnSetBc("U"));
};
auto add_domain_rhs_ops = [&](auto &pipeline) {
pipeline.push_back(new OpSetBc("U", true, boundaryMarker));
auto grad_u_at_gauss_pts = boost::make_shared<MatrixDouble>();
auto dot2_u_at_gauss_pts = boost::make_shared<VectorDouble>();
"U", grad_u_at_gauss_pts));
pipeline.push_back(
new OpCalculateScalarFieldValuesDotDot("U", dot2_u_at_gauss_pts));
pipeline.push_back(new OpDomainGradTimesVec(
"U", grad_u_at_gauss_pts,
[](double, double, double) -> double { return 1; }));
pipeline.push_back(new OpDomainTimesScalarField(
"U", dot2_u_at_gauss_pts,
[](const double, const double, const double) { return wave_speed2; }));
pipeline.push_back(new OpUnSetBc("U"));
};
auto add_boundary_base_ops = [&](auto &pipeline) {};
auto add_lhs_base_ops = [&](auto &pipeline) {
pipeline.push_back(new OpSetBc("U", false, boundaryMarker));
pipeline.push_back(new OpBoundaryMass(
"U", "U", [](const double, const double, const double) { return 1; }));
pipeline.push_back(new OpUnSetBc("U"));
};
auto add_rhs_base_ops = [&](auto &pipeline) {
pipeline.push_back(new OpSetBc("U", false, boundaryMarker));
auto u_at_gauss_pts = boost::make_shared<VectorDouble>();
auto boundary_function = [&](const double x, const double y,
const double z) {
auto pipeline_mng = mField.getInterface<PipelineManager>();
auto &fe_rhs = pipeline_mng->getBoundaryRhsFE();
const double t = fe_rhs->ts_t;
if ((t <= 0.5) && (x < 0.) && (y > -1. / 3) && (y < 1. / 3))
return sin(4 * M_PI * t);
else
return 0.;
};
pipeline.push_back(new OpCalculateScalarFieldValues("U", u_at_gauss_pts));
pipeline.push_back(new OpBoundaryTimeScalarField(
"U", u_at_gauss_pts,
[](const double, const double, const double) { return 1; }));
pipeline.push_back(new OpBoundarySource("U", boundary_function));
pipeline.push_back(new OpUnSetBc("U"));
};
auto pipeline_mng = mField.getInterface<PipelineManager>();
add_domain_base_ops(pipeline_mng->getOpDomainLhsPipeline());
add_domain_base_ops(pipeline_mng->getOpDomainRhsPipeline());
add_domain_lhs_ops(pipeline_mng->getOpDomainLhsPipeline());
add_domain_rhs_ops(pipeline_mng->getOpDomainRhsPipeline());
add_boundary_base_ops(pipeline_mng->getOpBoundaryLhsPipeline());
add_boundary_base_ops(pipeline_mng->getOpBoundaryRhsPipeline());
add_lhs_base_ops(pipeline_mng->getOpBoundaryLhsPipeline());
add_rhs_base_ops(pipeline_mng->getOpBoundaryRhsPipeline());
}
auto *pipeline_mng = mField.getInterface<PipelineManager>();
auto create_post_process_element = [&]() {
auto post_proc_fe = boost::make_shared<PostProcEle>(mField);
auto det_ptr = boost::make_shared<VectorDouble>();
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
post_proc_fe->getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
post_proc_fe->getOpPtrVector().push_back(
new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
post_proc_fe->getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
auto u_ptr = boost::make_shared<VectorDouble>();
post_proc_fe->getOpPtrVector().push_back(
new OpCalculateScalarFieldValues("U", u_ptr));
post_proc_fe->getOpPtrVector().push_back(
new OpPPMap(post_proc_fe->getPostProcMesh(),
post_proc_fe->getMapGaussPts(),
{{"U", u_ptr}},
{}, {}, {}
)
);
return post_proc_fe;
};
auto set_time_monitor = [&](auto dm, auto solver) {
boost::shared_ptr<Monitor> monitor_ptr(
new Monitor(dm, create_post_process_element()));
boost::shared_ptr<ForcesAndSourcesCore> null;
CHKERR DMMoFEMTSSetMonitor(dm, solver, simple->getDomainFEName(),
monitor_ptr, null, null);
};
auto set_fieldsplit_preconditioner = [&](auto solver) {
SNES snes;
CHKERR TSGetSNES(solver, &snes);
KSP ksp;
CHKERR SNESGetKSP(snes, &ksp);
PC pc;
CHKERR KSPGetPC(ksp, &pc);
PetscBool is_pcfs = PETSC_FALSE;
PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &is_pcfs);
if (is_pcfs == PETSC_TRUE) {
auto bc_mng = mField.getInterface<BcManager>();
auto name_prb = simple->getProblemName();
auto is_all_bc = bc_mng->getBlockIS(name_prb, "ESSENTIAL", "U", 0, 0);
int is_all_bc_size;
CHKERR ISGetSize(is_all_bc, &is_all_bc_size);
MOFEM_LOG("EXAMPLE", Sev::inform)
<< "Field split block size " << is_all_bc_size;
CHKERR PCFieldSplitSetIS(pc, PETSC_NULL,
is_all_bc); // boundary block
}
};
auto dm = simple->getDM();
auto D = createDMVector(dm);
CHKERR DMoFEMMeshToLocalVector(dm, D, INSERT_VALUES, SCATTER_FORWARD);
auto ts = pipeline_mng->createTSIM2();
CHKERR TSSetSolution(ts, D);
auto DD = vectorDuplicate(D);
CHKERR TS2SetSolution(ts, D, DD);
CHKERR set_time_monitor(dm, ts);
CHKERR TSSetFromOptions(ts);
CHKERR set_fieldsplit_preconditioner(ts);
CHKERR TSSetUp(ts);
CHKERR TSSolve(ts, NULL);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR DMoFEMMeshToLocalVector(dm, D, INSERT_VALUES, SCATTER_REVERSE);
}
// Processes to set output results are integrated in solveSystem()
}
}
int main(int argc, char *argv[]) {
// Initialisation of MoFEM/PETSc and MOAB data structures
const char param_file[] = "param_file.petsc";
MoFEM::Core::Initialize(&argc, &argv, param_file, help);
// Add logging channel for example
auto core_log = logging::core::get();
core_log->add_sink(
LogManager::createSink(LogManager::getStrmWorld(), "EXAMPLE"));
LogManager::setLog("EXAMPLE");
MOFEM_LOG_TAG("EXAMPLE", "example")
// Error handling
try {
// Register MoFEM discrete manager in PETSc
DMType dm_name = "DMMOFEM";
// Create MOAB instance
moab::Core mb_instance; // mesh database
moab::Interface &moab = mb_instance; // mesh database interface
// Create MoFEM instance
MoFEM::Core core(moab); // finite element database
MoFEM::Interface &m_field = core; // finite element interface
// Run the main analysis
WaveEquation heat_problem(m_field);
CHKERR heat_problem.runProgram();
}
// Finish work: cleaning memory, getting statistics, etc.
return 0;
}
MoFEMFunctionReturnHot
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:447
MoFEM::UnknownInterface::getInterface
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface refernce to pointer of interface.
Definition: UnknownInterface.hpp:93
MoFEM::EntitiesFieldData::EntData
Data on single entity (This is passed as argument to DataOperator::doWork)
Definition: EntitiesFieldData.hpp:127
WaveEquation::initialCondition
MoFEMErrorCode initialCondition()
Definition: wave_equation.cpp:158
BoundaryEle
ElementsAndOps< SPACE_DIM >::BoundaryEle BoundaryEle
Definition: child_and_parent.cpp:39
MoFEM::CoreTmp< 0 >
Core (interface) class.
Definition: Core.hpp:82
H1
@ H1
continuous field
Definition: definitions.h:85
OpDomainGradTimesVec
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpGradTimesTensor< 1, 1, SPACE_DIM > OpDomainGradTimesVec
Definition: initial_diffusion.cpp:34
MoFEM::FEMethod
structure for User Loop Methods on finite elements
Definition: LoopMethods.hpp:369
WaveEquation::setupProblem
MoFEMErrorCode setupProblem()
Definition: wave_equation.cpp:126
OpDomainTimesScalarField
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpBaseTimesScalar< 1 > OpDomainTimesScalarField
Definition: wave_equation.cpp:44
MoFEM::Exceptions::MoFEMErrorCode
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
OpDomainGradTimesVec
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpGradTimesTensor< 1, 1, SPACE_DIM > OpDomainGradTimesVec
Definition: wave_equation.cpp:46
OpBoundaryTimeScalarField
FormsIntegrators< BoundaryEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpBaseTimesScalar< 1 > OpBoundaryTimeScalarField
Definition: photon_diffusion.cpp:47
MoFEM::OpSetHOInvJacToScalarBases< 2 >
Definition: HODataOperators.hpp:78
OpBoundarySource
FormsIntegrators< BoundaryEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpSource< 1, 1 > OpBoundarySource
Definition: wave_equation.cpp:53
MoFEM::PETSC
@ PETSC
Definition: FormsIntegrators.hpp:104
MoFEM::PipelineManager
PipelineManager interface.
Definition: PipelineManager.hpp:24
MoFEM::DMoFEMMeshToLocalVector
PetscErrorCode DMoFEMMeshToLocalVector(DM dm, Vec l, InsertMode mode, ScatterMode scatter_mode)
set local (or ghosted) vector values on mesh for partition only
Definition: DMMoFEM.cpp:527
BasicFiniteElements.hpp
MoFEM::PipelineManager::getBoundaryRhsFE
boost::shared_ptr< FEMethod > & getBoundaryRhsFE()
Definition: PipelineManager.hpp:413
MoFEM::CoreTmp< 0 >::Finalize
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:112
WaveEquation::mField
MoFEM::Interface & mField
Definition: wave_equation.cpp:107
MoFEM::Simple
Simple interface for fast problem set-up.
Definition: Simple.hpp:27
OpBoundaryMass
FormsIntegrators< BoundaryEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 1, 1 > OpBoundaryMass
Definition: wave_equation.cpp:49
OpDomainMass
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 1, FIELD_DIM > OpDomainMass
Definition: child_and_parent.cpp:53
OpDomainMass
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 1, 1 > OpDomainMass
Definition: wave_equation.cpp:40
order
constexpr int order
Definition: dg_projection.cpp:18
MoFEM::OpCalculateHOJac< 2 >
Definition: HODataOperators.hpp:273
MoFEM::DeprecatedCoreInterface
Deprecated interface functions.
Definition: DeprecatedCoreInterface.hpp:16
OpBoundaryMass
FormsIntegrators< BoundaryEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 1, SPACE_DIM > OpBoundaryMass
[Only used with Hencky/nonlinear material]
Definition: seepage.cpp:71
MoFEM::OpCalculateScalarFieldGradient
Get field gradients at integration pts for scalar filed rank 0, i.e. vector field.
Definition: UserDataOperators.hpp:1294
MoFEM::Interface
DeprecatedCoreInterface Interface
Definition: Interface.hpp:1975
WaveEquation::boundaryCondition
MoFEMErrorCode boundaryCondition()
Definition: wave_equation.cpp:163
WaveEquation::setIntegrationRules
MoFEMErrorCode setIntegrationRules()
Definition: wave_equation.cpp:142
approx_order
static constexpr int approx_order
Definition: prism_polynomial_approximation.cpp:14
MoFEM::PipelineManager::EdgeEle
MoFEM::EdgeElementForcesAndSourcesCore EdgeEle
Definition: PipelineManager.hpp:36
MoFEM::PostProcBrokenMeshInMoab
Definition: PostProcBrokenMeshInMoabBase.hpp:667
OpDomainGradGrad
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpGradGrad< 1, 1, SPACE_DIM > OpDomainGradGrad
Definition: wave_equation.cpp:42
CHKERR
#define CHKERR
Inline error check.
Definition: definitions.h:535
MoFEM::createDMVector
auto createDMVector(DM dm)
Get smart vector from DM.
Definition: DMMoFEM.hpp:1018
WaveEquation::WaveEquation
WaveEquation(MoFEM::Interface &m_field)
Definition: wave_equation.cpp:113
MoFEM
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
OpDomainTimesScalarField
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpBaseTimesScalar< 1 > OpDomainTimesScalarField
Definition: initial_diffusion.cpp:32
MoFEM::BcManager
Simple interface for fast problem set-up.
Definition: BcManager.hpp:25
WaveEquation::runProgram
MoFEMErrorCode runProgram()
Definition: wave_equation.cpp:377
MoFEM::FaceElementForcesAndSourcesCore::UserDataOperator
default operator for TRI element
Definition: FaceElementForcesAndSourcesCore.hpp:94
simple
void simple(double P1[], double P2[], double P3[], double c[], const int N)
Definition: acoustic.cpp:69
double
MoFEM::PipelineManager::FaceEle
MoFEM::FaceElementForcesAndSourcesCore FaceEle
Definition: PipelineManager.hpp:35
OpBoundarySource
FormsIntegrators< EdgeEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpSource< 1, 1 > OpBoundarySource
Definition: helmholtz.cpp:31
wave_speed2
constexpr double wave_speed2
Definition: wave_equation.cpp:55
MoFEM::FormsIntegrators::Assembly
Assembly methods.
Definition: FormsIntegrators.hpp:302
OpPPMap
OpPostProcMapInMoab< SPACE_DIM, SPACE_DIM > OpPPMap
Definition: photon_diffusion.cpp:29
WaveEquation::solveSystem
MoFEMErrorCode solveSystem()
Definition: wave_equation.cpp:272
MoFEM::OpCalculateScalarFieldValues
Get value at integration points for scalar field.
Definition: UserDataOperators.hpp:82
MoFEM::DMRegister_MoFEM
PetscErrorCode DMRegister_MoFEM(const char sname[])
Register MoFEM problem.
Definition: DMMoFEM.cpp:47
WaveEquation::readMesh
MoFEMErrorCode readMesh()
Definition: wave_equation.cpp:115
WaveEquation::outputResults
MoFEMErrorCode outputResults()
Definition: wave_equation.cpp:369
MoFEM::OpSetHOWeightsOnFace
Modify integration weights on face to take in account higher-order geometry.
Definition: HODataOperators.hpp:122
MOFEM_LOG_TAG
#define MOFEM_LOG_TAG(channel, tag)
Tag channel.
Definition: LogManager.hpp:339
t
constexpr double t
plate stiffness
Definition: plate.cpp:59
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
BiLinearForm
OpGradTimesTensor
FormsIntegrators< DomainEleOp >::Assembly< A >::LinearForm< I >::OpGradTimesTensor< 1, FIELD_DIM, SPACE_DIM > OpGradTimesTensor
Definition: operators_tests.cpp:48
MoFEM::OpCalculateScalarFieldValuesDotDot
OpCalculateScalarFieldValuesFromPetscVecImpl< PetscData::CTX_SET_X_TT > OpCalculateScalarFieldValuesDotDot
Definition: UserDataOperators.hpp:275
WaveEquation
Definition: wave_equation.cpp:88
integration_rule
auto integration_rule
Definition: free_surface.cpp:185
MoFEM::OpUnSetBc
Definition: FormsIntegrators.hpp:49
ElementsAndOps
Definition: child_and_parent.cpp:18
main
int main(int argc, char *argv[])
Definition: wave_equation.cpp:392
MoFEM::PipelineManager::getDomainLhsFE
boost::shared_ptr< FEMethod > & getDomainLhsFE()
Definition: PipelineManager.hpp:401
DomainEleOp
help
static char help[]
Definition: wave_equation.cpp:24
MoFEM::CoreTmp< 0 >::Initialize
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:72
MOFEM_LOG
#define MOFEM_LOG(channel, severity)
Log.
Definition: LogManager.hpp:308
MoFEM::vectorDuplicate
SmartPetscObj< Vec > vectorDuplicate(Vec vec)
Create duplicate vector of smart vector.
Definition: PetscSmartObj.hpp:217
OpDomainGradGrad
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpGradGrad< 1, 1, SPACE_DIM > OpDomainGradGrad
Definition: helmholtz.cpp:25
CATCH_ERRORS
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:372
MoFEM::Core
CoreTmp< 0 > Core
Definition: Core.hpp:1094
UserDataOperator
ForcesAndSourcesCore::UserDataOperator UserDataOperator
Definition: HookeElement.hpp:75
Monitor
[Push operators to pipeline]
Definition: adolc_plasticity.cpp:333
MoFEM::DMMoFEMTSSetMonitor
PetscErrorCode DMMoFEMTSSetMonitor(DM dm, TS ts, const std::string fe_name, boost::shared_ptr< MoFEM::FEMethod > method, boost::shared_ptr< MoFEM::BasicMethod > pre_only, boost::shared_ptr< MoFEM::BasicMethod > post_only)
Set Monitor To TS solver.
Definition: DMMoFEM.cpp:1060
AINSWORTH_LEGENDRE_BASE
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition: definitions.h:60
MoFEM::OpSetBc
Set indices on entities on finite element.
Definition: FormsIntegrators.hpp:38
WaveEquation::boundaryMarker
boost::shared_ptr< std::vector< unsigned char > > boundaryMarker
Definition: wave_equation.cpp:110
MoFEM::OpInvertMatrix
Definition: UserDataOperators.hpp:3254
ReactionDiffusionEquation::D
const double D
diffusivity
Definition: reaction_diffusion.cpp:20
MoFEMFunctionBeginHot
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:440
DomainEle
ElementsAndOps< SPACE_DIM >::DomainEle DomainEle
Definition: child_and_parent.cpp:34
MoFEM::SmartPetscObj< DM >
MoFEM::DMoFEMLoopFiniteElements
PetscErrorCode DMoFEMLoopFiniteElements(DM dm, const char fe_name[], MoFEM::FEMethod *method, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr())
Executes FEMethod for finite elements in DM.
Definition: DMMoFEM.cpp:590
OpBoundaryTimeScalarField
FormsIntegrators< BoundaryEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpBaseTimesScalar< 1 > OpBoundaryTimeScalarField
Definition: wave_equation.cpp:51
MoFEM::PetscOptionsGetInt
PetscErrorCode PetscOptionsGetInt(PetscOptions *, const char pre[], const char name[], PetscInt *ivalue, PetscBool *set)
Definition: DeprecatedPetsc.hpp:142
MoFEMFunctionReturn
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:416
SPACE_DIM
constexpr int SPACE_DIM
[Define dimension]
Definition: wave_equation.cpp:29
EntData
EntitiesFieldData::EntData EntData
[Define dimension]
Definition: wave_equation.cpp:32
MoFEMFunctionBegin
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:346
WaveEquation::assembleSystem
MoFEMErrorCode assembleSystem()
Definition: wave_equation.cpp:185
MoFEM::OpPostProcMapInMoab
Post post-proc data at points from hash maps.
Definition: PostProcBrokenMeshInMoabBase.hpp:698