v0.14.0
quad_polynomial_approximation.cpp
Go to the documentation of this file.
1 /** \file quad_polynomial_approximation.cpp
2  \example quad_polynomial_approximation.cpp
3  \brief Checking approximation functions for quad
4 
5 */
6 
7 
8 
9 #include <MoFEM.hpp>
10 
11 using namespace MoFEM;
12 
16 
17 static char help[] = "...\n\n";
18 
19 static constexpr int approx_order = 6;
20 struct ApproxFunction {
21  static inline double fun(double x, double y) {
22  double r = 1;
23  for (int o = 1; o <= approx_order; ++o) {
24  for (int i = 0; i <= o; ++i) {
25  int j = o - i;
26  if (j >= 0)
27  r += pow(x, i) * pow(y, j);
28  }
29  }
30  return r;
31  }
32 
33  static inline VectorDouble3 diff_fun(double x, double y) {
34  VectorDouble3 r(2);
35  r.clear();
36  for (int o = 1; o <= approx_order; ++o) {
37  for (int i = 0; i <= o; ++i) {
38  int j = o - i;
39  if (j >= 0) {
40  r[0] += i > 0 ? i * pow(x, i - 1) * pow(y, j) : 0;
41  r[1] += j > 0 ? j * pow(x, i) * pow(y, j - 1) : 0;
42  }
43  }
44  }
45  return r;
46  }
47 };
48 
49 struct QuadOpCheck : public OpEle {
50 
51  QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
52  boost::shared_ptr<MatrixDouble> &diff_field_vals);
53  MoFEMErrorCode doWork(int side, EntityType type,
55 
56 private:
57  boost::shared_ptr<VectorDouble> fieldVals;
58  boost::shared_ptr<MatrixDouble> diffFieldVals;
59 };
60 
61 struct QuadOpRhs : public OpEle {
62 
64  MoFEMErrorCode doWork(int side, EntityType type,
66 
67 private:
69 };
70 
71 struct QuadOpLhs : public OpEle {
72 
74  MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
75  EntityType col_type,
77  EntitiesFieldData::EntData &col_data);
78 
79 private:
81 };
82 
83 int main(int argc, char *argv[]) {
84 
85  MoFEM::Core::Initialize(&argc, &argv, (char *)0, help);
86 
87  try {
88 
89  // Declare elements
90  enum bases {
91  AINSWORTH,
92  AINSWORTH_LOBATTO,
93  DEMKOWICZ,
94  BERNSTEIN,
95  LASBASETOP
96  };
97  const char *list_bases[] = {"ainsworth", "ainsworth_lobatto", "demkowicz",
98  "bernstein"};
99  PetscBool flg;
100  PetscInt choice_base_value = AINSWORTH;
101  CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-base", list_bases,
102  LASBASETOP, &choice_base_value, &flg);
103 
104  if (flg != PETSC_TRUE)
105  SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "base not set");
107  if (choice_base_value == AINSWORTH)
109  if (choice_base_value == AINSWORTH_LOBATTO)
110  base = AINSWORTH_LOBATTO_BASE;
111  else if (choice_base_value == DEMKOWICZ)
112  base = DEMKOWICZ_JACOBI_BASE;
113  else if (choice_base_value == BERNSTEIN)
115 
116  enum spaces { H1SPACE, L2SPACE, LASBASETSPACE };
117  const char *list_spaces[] = {"h1", "l2"};
118  PetscInt choice_space_value = H1SPACE;
119  CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-space", list_spaces,
120  LASBASETSPACE, &choice_space_value, &flg);
121  if (flg != PETSC_TRUE)
122  SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "space not set");
123  FieldSpace space = H1;
124  if (choice_space_value == H1SPACE)
125  space = H1;
126  else if (choice_space_value == L2SPACE)
127  space = L2;
128 
129  moab::Core mb_instance;
130  moab::Interface &moab = mb_instance;
131 
132  std::array<double, 12> one_quad_coords = {0, 0, 0,
133 
134  2, 0, 0,
135 
136  1, 1, 0,
137 
138  0, 1, 0};
139 
140  std::array<EntityHandle, 4> one_quad_nodes;
141  for (int n = 0; n != 4; ++n)
142  CHKERR moab.create_vertex(&one_quad_coords[3 * n], one_quad_nodes[n]);
143  EntityHandle one_quad;
144  CHKERR moab.create_element(MBQUAD, one_quad_nodes.data(), 4, one_quad);
145  Range one_quad_range;
146  one_quad_range.insert(one_quad);
147  Range one_quad_adj_ents;
148  CHKERR moab.get_adjacencies(one_quad_range, 1, true, one_quad_adj_ents,
149  moab::Interface::UNION);
150 
151  MoFEM::Core core(moab);
152  MoFEM::Interface &m_field = core;
153 
154  BitRefLevel bit_level0 = BitRefLevel().set(0);
155  CHKERR m_field.getInterface<BitRefManager>()->setBitRefLevelByDim(
156  0, 2, bit_level0);
157 
158  // Fields
159  CHKERR m_field.add_field("FIELD1", space, base, 1);
160  CHKERR m_field.add_ents_to_field_by_type(0, MBQUAD, "FIELD1");
161 
162  CHKERR m_field.set_field_order(0, MBVERTEX, "FIELD1", 1);
163  CHKERR m_field.set_field_order(0, MBEDGE, "FIELD1", approx_order + 1);
164  CHKERR m_field.set_field_order(0, MBQUAD, "FIELD1", approx_order + 1);
165  CHKERR m_field.build_fields();
166 
167  // FE
168  CHKERR m_field.add_finite_element("QUAD");
169 
170  // Define rows/cols and element data
171  CHKERR m_field.modify_finite_element_add_field_row("QUAD", "FIELD1");
172  CHKERR m_field.modify_finite_element_add_field_col("QUAD", "FIELD1");
173  CHKERR m_field.modify_finite_element_add_field_data("QUAD", "FIELD1");
174  CHKERR m_field.add_ents_to_finite_element_by_type(0, MBQUAD, "QUAD");
175 
176  // build finite elemnts
177  CHKERR m_field.build_finite_elements();
178  // //build adjacencies
179  CHKERR m_field.build_adjacencies(bit_level0);
180 
181  // Problem
182  CHKERR m_field.add_problem("TEST_PROBLEM");
183 
184  // set finite elements for problem
185  CHKERR m_field.modify_problem_add_finite_element("TEST_PROBLEM", "QUAD");
186  // set refinement level for problem
187  CHKERR m_field.modify_problem_ref_level_add_bit("TEST_PROBLEM", bit_level0);
188 
189  // build problem
190  ProblemsManager *prb_mng_ptr;
191  CHKERR m_field.getInterface(prb_mng_ptr);
192  CHKERR prb_mng_ptr->buildProblem("TEST_PROBLEM", true);
193  // partition
194  CHKERR prb_mng_ptr->partitionSimpleProblem("TEST_PROBLEM");
195  CHKERR prb_mng_ptr->partitionFiniteElements("TEST_PROBLEM");
196  // what are ghost nodes, see Petsc Manual
197  CHKERR prb_mng_ptr->partitionGhostDofs("TEST_PROBLEM");
198 
199  // Create matrices
202  ->createMPIAIJWithArrays<PetscGlobalIdx_mi_tag>("TEST_PROBLEM", A);
204  CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
205  ROW, F);
207  CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
208  COL, D);
209 
210  auto rule = [&](int, int, int p) { return 2 * (p + 1); };
211 
212  auto assemble_matrices_and_vectors = [&]() {
214  Ele fe(m_field);
215  fe.getRuleHook = rule;
216  auto jac_ptr = boost::make_shared<MatrixDouble>();
217  auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
218  auto det_ptr = boost::make_shared<VectorDouble>();
219  fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
220  fe.getOpPtrVector().push_back(
221  new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
222  fe.getOpPtrVector().push_back(
223  new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
224  fe.getOpPtrVector().push_back(
225  new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
226  fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
227  fe.getOpPtrVector().push_back(new QuadOpRhs(F));
228  fe.getOpPtrVector().push_back(new QuadOpLhs(A));
229  CHKERR VecZeroEntries(F);
230  CHKERR MatZeroEntries(A);
231  CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
232  CHKERR VecAssemblyBegin(F);
233  CHKERR VecAssemblyEnd(F);
234  CHKERR MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
235  CHKERR MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
237  };
238 
239  auto solve_problem = [&] {
241  auto solver = createKSP(PETSC_COMM_WORLD);
242  CHKERR KSPSetOperators(solver, A, A);
243  CHKERR KSPSetFromOptions(solver);
244  CHKERR KSPSetUp(solver);
245  CHKERR KSPSolve(solver, F, D);
246  CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
247  CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
248  CHKERR m_field.getInterface<VecManager>()->setLocalGhostVector(
249  "TEST_PROBLEM", COL, D, INSERT_VALUES, SCATTER_REVERSE);
251  };
252 
253  auto check_solution = [&] {
255  Ele fe(m_field);
256  fe.getRuleHook = rule;
257  auto field_vals_ptr = boost::make_shared<VectorDouble>();
258  auto diff_field_vals_ptr = boost::make_shared<MatrixDouble>();
259  auto jac_ptr = boost::make_shared<MatrixDouble>();
260  auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
261  auto det_ptr = boost::make_shared<VectorDouble>();
262 
263  fe.getOpPtrVector().push_back(
264  new OpCalculateScalarFieldValues("FIELD1", field_vals_ptr));
265  fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
266  fe.getOpPtrVector().push_back(
267  new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
268  fe.getOpPtrVector().push_back(
269  new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
270  fe.getOpPtrVector().push_back(
271  new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
272  fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
273  fe.getOpPtrVector().push_back(new OpCalculateScalarFieldGradient<2>(
274  "FIELD1", diff_field_vals_ptr, space == L2 ? MBQUAD : MBVERTEX));
275  fe.getOpPtrVector().push_back(
276  new QuadOpCheck(field_vals_ptr, diff_field_vals_ptr));
277  CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
279  };
280 
281  CHKERR assemble_matrices_and_vectors();
282  CHKERR solve_problem();
283  CHKERR check_solution();
284  }
285  CATCH_ERRORS;
286 
288  return 0;
289 }
290 
291 QuadOpCheck::QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
292  boost::shared_ptr<MatrixDouble> &diff_field_vals)
293  : OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
294  fieldVals(field_vals), diffFieldVals(diff_field_vals) {}
295 
299 
300  if (type == MBQUAD) {
301  const int nb_gauss_pts = data.getN().size1();
302  auto t_coords = getFTensor1CoordsAtGaussPts();
303  for (int gg = 0; gg != nb_gauss_pts; ++gg) {
304  double f = ApproxFunction::fun(t_coords(0), t_coords(1));
305  constexpr double eps = 1e-6;
306 
307  std::cout << f - (*fieldVals)[gg] << std::endl;
308 
309  if (std::abs(f - (*fieldVals)[gg]) > eps)
310  SETERRQ3(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
311  "Wrong value %d : %6.4e != %6.4e", gg, f, (*fieldVals)[gg]);
312 
313  VectorDouble3 diff_f = ApproxFunction::diff_fun(t_coords(0), t_coords(1));
314  for (auto d : {0, 1})
315  std::cout << diff_f[d] - (*diffFieldVals)(d, gg) << " ";
316  std::cout << std::endl;
317  for (auto d : {0, 1})
318  if (std::abs(diff_f[d] - (*diffFieldVals)(d, gg)) > eps)
319  SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
320  "Wrong derivative value (%d) %6.4e != %6.4e", diff_f[d],
321  (*diffFieldVals)(d, gg));
322 
323  ++t_coords;
324  }
325  }
327 }
328 
330  : OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
331  F(f) {}
332 
333 MoFEMErrorCode QuadOpRhs::doWork(int side, EntityType type,
337  const int nb_dofs = data.getIndices().size();
338  if (nb_dofs) {
339  const int nb_gauss_pts = data.getN().size1();
340  VectorDouble nf(nb_dofs);
341  nf.clear();
342  auto t_base = data.getFTensor0N();
343  auto t_coords = getFTensor1CoordsAtGaussPts();
344  auto t_w = getFTensor0IntegrationWeight();
345  auto a = getMeasure();
346  for (int gg = 0; gg != nb_gauss_pts; ++gg) {
347  double f = ApproxFunction::fun(t_coords(0), t_coords(1));
348  double v = a * t_w * f;
349  double *val = &*nf.begin();
350  for (int bb = 0; bb != nb_dofs; ++bb) {
351  *val += v * t_base;
352  ++t_base;
353  ++val;
354  }
355  ++t_coords;
356  ++t_w;
357  // ++t_normal;
358  }
359  CHKERR VecSetValues(F, data, &*nf.data().begin(), ADD_VALUES);
360  }
362 }
363 
365  : OpEle("FIELD1", "FIELD1",
367  A(a) {
368  // FIXME: Can be symmetric, is not for simplicity
369  sYmm = false;
370 }
371 
372 MoFEMErrorCode QuadOpLhs::doWork(int row_side, int col_side,
373  EntityType row_type, EntityType col_type,
374  EntitiesFieldData::EntData &row_data,
375  EntitiesFieldData::EntData &col_data) {
378  const int row_nb_dofs = row_data.getIndices().size();
379  const int col_nb_dofs = col_data.getIndices().size();
380  if (row_nb_dofs && col_nb_dofs) {
381  const int nb_gauss_pts = row_data.getN().size1();
382  MatrixDouble m(row_nb_dofs, col_nb_dofs);
383  m.clear();
384  auto t_w = getFTensor0IntegrationWeight();
385  auto a = getMeasure();
386  double *row_base_ptr = &*row_data.getN().data().begin();
387  double *col_base_ptr = &*col_data.getN().data().begin();
388  for (int gg = 0; gg != nb_gauss_pts; ++gg) {
389  double v = a * t_w;
390  cblas_dger(CblasRowMajor, row_nb_dofs, col_nb_dofs, v, row_base_ptr, 1,
391  col_base_ptr, 1, &*m.data().begin(), col_nb_dofs);
392  row_base_ptr += row_nb_dofs;
393  col_base_ptr += col_nb_dofs;
394  ++t_w;
395  }
396  CHKERR MatSetValues(A, row_data, col_data, &*m.data().begin(), ADD_VALUES);
397  }
399 }
MoFEM::UnknownInterface::getInterface
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface reference to pointer of interface.
Definition: UnknownInterface.hpp:93
MoFEM::EntitiesFieldData::EntData
Data on single entity (This is passed as argument to DataOperator::doWork)
Definition: EntitiesFieldData.hpp:128
QuadOpCheck::QuadOpCheck
QuadOpCheck(boost::shared_ptr< VectorDouble > &field_vals, boost::shared_ptr< MatrixDouble > &diff_field_vals)
Definition: quad_polynomial_approximation.cpp:291
MoFEM::CoreInterface::loop_finite_elements
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
MoFEM::ProblemsManager::buildProblem
MoFEMErrorCode buildProblem(const std::string name, const bool square_matrix, int verb=VERBOSE)
build problem data structures
Definition: ProblemsManager.cpp:87
MoFEM::CoreTmp< 0 >
Core (interface) class.
Definition: Core.hpp:82
H1
@ H1
continuous field
Definition: definitions.h:85
MoFEM::MatSetValues
MoFEMErrorCode MatSetValues(Mat M, const EntitiesFieldData::EntData &row_data, const EntitiesFieldData::EntData &col_data, const double *ptr, InsertMode iora)
Assemble PETSc matrix.
Definition: EntitiesFieldData.hpp:1644
QuadOpCheck
Definition: quad_polynomial_approximation.cpp:49
MoFEM::Types::VectorDouble3
VectorBoundedArray< double, 3 > VectorDouble3
Definition: Types.hpp:92
EntityHandle
MoFEM::ProblemsManager
Problem manager is used to build and partition problems.
Definition: ProblemsManager.hpp:21
MoFEM::CoreInterface::modify_finite_element_add_field_row
virtual MoFEMErrorCode modify_finite_element_add_field_row(const std::string &fe_name, const std::string name_row)=0
set field row which finite element use
L2
@ L2
field with C-1 continuity
Definition: definitions.h:88
MoFEM::Exceptions::MoFEMErrorCode
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
MoFEM::Types::MatrixDouble
UBlasMatrix< double > MatrixDouble
Definition: Types.hpp:77
MoFEM::OpSetHOInvJacToScalarBases< 2 >
Definition: HODataOperators.hpp:78
approx_order
static constexpr int approx_order
Definition: quad_polynomial_approximation.cpp:19
MoFEM.hpp
A
constexpr AssemblyType A
Definition: operators_tests.cpp:30
MoFEM::CoreTmp< 0 >::Finalize
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:112
MoFEM::createKSP
auto createKSP(MPI_Comm comm)
Definition: PetscSmartObj.hpp:261
MOFEM_IMPOSSIBLE_CASE
@ MOFEM_IMPOSSIBLE_CASE
Definition: definitions.h:35
MoFEM::VecSetValues
MoFEMErrorCode VecSetValues(Vec V, const EntitiesFieldData::EntData &data, const double *ptr, InsertMode iora)
Assemble PETSc vector.
Definition: EntitiesFieldData.hpp:1589
sdf.r
int r
Definition: sdf.py:8
MoFEM::CoreInterface::add_ents_to_field_by_type
virtual MoFEMErrorCode add_ents_to_field_by_type(const Range &ents, const EntityType type, const std::string &name, int verb=DEFAULT_VERBOSITY)=0
Add entities to field meshset.
MoFEM::OpCalculateHOJac< 2 >
Definition: HODataOperators.hpp:273
MoFEM::ForcesAndSourcesCore::UserDataOperator::getFTensor0IntegrationWeight
auto getFTensor0IntegrationWeight()
Get integration weights.
Definition: ForcesAndSourcesCore.hpp:1240
MoFEM::DeprecatedCoreInterface
Deprecated interface functions.
Definition: DeprecatedCoreInterface.hpp:16
MoFEM::ForcesAndSourcesCore::UserDataOperator::getMeasure
double getMeasure() const
get measure of element
Definition: ForcesAndSourcesCore.hpp:1275
MoFEM::OpCalculateScalarFieldGradient
Get field gradients at integration pts for scalar filed rank 0, i.e. vector field.
Definition: UserDataOperators.hpp:1293
ROW
@ ROW
Definition: definitions.h:136
MoFEM::Interface
DeprecatedCoreInterface Interface
Definition: Interface.hpp:2010
MoFEM::EntitiesFieldData::EntData::getFTensor0N
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
Definition: EntitiesFieldData.hpp:1502
FieldSpace
FieldSpace
approximation spaces
Definition: definitions.h:82
MoFEM::CoreInterface::add_ents_to_finite_element_by_type
virtual MoFEMErrorCode add_ents_to_finite_element_by_type(const EntityHandle entities, const EntityType type, const std::string &name, const bool recursive=true)=0
add entities to finite element
EntData
EntitiesFieldData::EntData EntData
Definition: quad_polynomial_approximation.cpp:15
CHKERR
#define CHKERR
Inline error check.
Definition: definitions.h:548
ApproxFunction
Definition: prism_polynomial_approximation.cpp:16
MoFEM::FaceElementForcesAndSourcesCore::UserDataOperator
friend class UserDataOperator
Definition: FaceElementForcesAndSourcesCore.hpp:86
MoFEM::CoreInterface::add_finite_element
virtual MoFEMErrorCode add_finite_element(const std::string &fe_name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
add finite element
MoFEM
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
MoFEM::CoreInterface::modify_finite_element_add_field_col
virtual MoFEMErrorCode modify_finite_element_add_field_col(const std::string &fe_name, const std::string name_row)=0
set field col which finite element use
a
constexpr double a
Definition: approx_sphere.cpp:30
QuadOpLhs::doWork
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)
Operator for bi-linear form, usually to calculate values on left hand side.
Definition: quad_polynomial_approximation.cpp:372
MoFEM::CoreInterface::build_finite_elements
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
MoFEM::ForcesAndSourcesCore::UserDataOperator
Definition: ForcesAndSourcesCore.hpp:549
QuadOpCheck::diffFieldVals
boost::shared_ptr< MatrixDouble > diffFieldVals
Definition: quad_polynomial_approximation.cpp:58
MoFEM::FaceElementForcesAndSourcesCore::UserDataOperator
default operator for TRI element
Definition: FaceElementForcesAndSourcesCore.hpp:94
convert.type
type
Definition: convert.py:64
MoFEM::OpCalculateScalarFieldValues
Get value at integration points for scalar field.
Definition: UserDataOperators.hpp:82
COL
@ COL
Definition: definitions.h:136
MoFEM::EntitiesFieldData::EntData::getIndices
const VectorInt & getIndices() const
Get global indices of dofs on entity.
Definition: EntitiesFieldData.hpp:1214
MoFEM::OpSetHOWeightsOnFace
Modify integration weights on face to take in account higher-order geometry.
Definition: HODataOperators.hpp:122
MoFEM::FaceElementForcesAndSourcesCore
Face finite element.
Definition: FaceElementForcesAndSourcesCore.hpp:23
QuadOpRhs::doWork
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.
Definition: quad_polynomial_approximation.cpp:333
ApproxFunction::diff_fun
static VectorDouble3 diff_fun(double x, double y, double z)
Definition: prism_polynomial_approximation.cpp:32
AINSWORTH_LOBATTO_BASE
@ AINSWORTH_LOBATTO_BASE
Definition: definitions.h:62
QuadOpCheck::fieldVals
boost::shared_ptr< VectorDouble > fieldVals
Definition: quad_polynomial_approximation.cpp:57
QuadOpRhs::F
SmartPetscObj< Vec > F
Definition: quad_polynomial_approximation.cpp:68
MoFEM::CoreInterface::modify_finite_element_add_field_data
virtual MoFEMErrorCode modify_finite_element_add_field_data(const std::string &fe_name, const std::string name_field)=0
set finite element field data
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
MoFEM::ProblemsManager::partitionFiniteElements
MoFEMErrorCode partitionFiniteElements(const std::string name, bool part_from_moab=false, int low_proc=-1, int hi_proc=-1, int verb=VERBOSE)
partition finite elements
Definition: ProblemsManager.cpp:2167
MoFEM::CoreInterface::modify_problem_ref_level_add_bit
virtual MoFEMErrorCode modify_problem_ref_level_add_bit(const std::string &name_problem, const BitRefLevel &bit)=0
add ref level to problem
MoFEM::VecManager
Vector manager is used to create vectors \mofem_vectors.
Definition: VecManager.hpp:23
QuadOpLhs
Definition: quad_polynomial_approximation.cpp:71
FTensor::Index< 'i', 3 >
AINSWORTH_BERNSTEIN_BEZIER_BASE
@ AINSWORTH_BERNSTEIN_BEZIER_BASE
Definition: definitions.h:64
QuadOpCheck::doWork
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.
Definition: quad_polynomial_approximation.cpp:296
MoFEM::MatrixManager
Matrix manager is used to build and partition problems.
Definition: MatrixManager.hpp:21
convert.n
n
Definition: convert.py:82
MoFEM::ForcesAndSourcesCore
structure to get information form mofem into EntitiesFieldData
Definition: ForcesAndSourcesCore.hpp:22
QuadOpRhs::QuadOpRhs
QuadOpRhs(SmartPetscObj< Vec > &f)
Definition: quad_polynomial_approximation.cpp:329
v
const double v
phase velocity of light in medium (cm/ns)
Definition: initial_diffusion.cpp:40
Range
QuadOpRhs
Definition: quad_polynomial_approximation.cpp:61
MoFEM::CoreTmp< 0 >::Initialize
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:72
ApproxFunction::fun
static double fun(double x, double y, double z)
Definition: prism_polynomial_approximation.cpp:17
CATCH_ERRORS
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:385
DEMKOWICZ_JACOBI_BASE
@ DEMKOWICZ_JACOBI_BASE
Definition: definitions.h:66
MoFEM::EntitiesFieldData::EntData::getN
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
Definition: EntitiesFieldData.hpp:1318
MoFEM::Core
CoreTmp< 0 > Core
Definition: Core.hpp:1148
MoFEM::ProblemsManager::partitionSimpleProblem
MoFEMErrorCode partitionSimpleProblem(const std::string name, int verb=VERBOSE)
partition problem dofs
Definition: ProblemsManager.cpp:1537
HenckyOps::f
auto f
Definition: HenckyOps.hpp:15
Ele
MoFEM::PipelineManager::ElementsAndOpsByDim< SPACE_DIM >::DomainEle Ele
Definition: hdiv_check_approx_in_3d.cpp:18
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
eps
static const double eps
Definition: check_base_functions_derivatives_on_tet.cpp:11
AINSWORTH_LEGENDRE_BASE
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition: definitions.h:60
MoFEM::PetscOptionsGetEList
PetscErrorCode PetscOptionsGetEList(PetscOptions *, const char pre[], const char name[], const char *const *list, PetscInt next, PetscInt *value, PetscBool *set)
Definition: DeprecatedPetsc.hpp:203
MoFEM::OpInvertMatrix
Definition: UserDataOperators.hpp:3249
MoFEM::CoreInterface::build_fields
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
sdf_hertz_2d_axisymm_plane.d
float d
Definition: sdf_hertz_2d_axisymm_plane.py:4
ApproxFunction::fun
static double fun(double x, double y)
Definition: quad_polynomial_approximation.cpp:21
QuadOpLhs::QuadOpLhs
QuadOpLhs(SmartPetscObj< Mat > &a)
Definition: quad_polynomial_approximation.cpp:364
FieldApproximationBase
FieldApproximationBase
approximation base
Definition: definitions.h:58
ApproxFunction::diff_fun
static VectorDouble3 diff_fun(double x, double y)
Definition: quad_polynomial_approximation.cpp:33
MoFEM::Types::VectorDouble
UBlasVector< double > VectorDouble
Definition: Types.hpp:68
ReactionDiffusionEquation::D
const double D
diffusivity
Definition: reaction_diffusion.cpp:20
m
FTensor::Index< 'm', 3 > m
Definition: shallow_wave.cpp:80
MoFEM::BitRefManager
Managing BitRefLevels.
Definition: BitRefManager.hpp:21
MoFEM::CoreInterface::modify_problem_add_finite_element
virtual MoFEMErrorCode modify_problem_add_finite_element(const std::string name_problem, const std::string &fe_name)=0
add finite element to problem, this add entities assigned to finite element to a particular problem
main
int main(int argc, char *argv[])
Definition: quad_polynomial_approximation.cpp:83
MoFEM::Types::BitRefLevel
std::bitset< BITREFLEVEL_SIZE > BitRefLevel
Bit structure attached to each entity identifying to what mesh entity is attached.
Definition: Types.hpp:40
MOFEM_ATOM_TEST_INVALID
@ MOFEM_ATOM_TEST_INVALID
Definition: definitions.h:40
MoFEM::CoreInterface::build_adjacencies
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
MoFEM::CoreInterface::set_field_order
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
MoFEM::SmartPetscObj< Vec >
MoFEM::ProblemsManager::partitionGhostDofs
MoFEMErrorCode partitionGhostDofs(const std::string name, int verb=VERBOSE)
determine ghost nodes
Definition: ProblemsManager.cpp:2339
MoFEM::CoreInterface::add_problem
virtual MoFEMErrorCode add_problem(const std::string &name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add problem.
MoFEM::DataOperator::sYmm
bool sYmm
If true assume that matrix is symmetric structure.
Definition: DataOperators.hpp:82
help
static char help[]
Definition: quad_polynomial_approximation.cpp:17
convert.int
int
Definition: convert.py:64
MoFEMFunctionReturn
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:429
MoFEM::CoreInterface::add_field
virtual MoFEMErrorCode add_field(const std::string name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add field.
MoFEMFunctionBegin
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:359
MoFEM::ForcesAndSourcesCore::UserDataOperator::getFTensor1CoordsAtGaussPts
auto getFTensor1CoordsAtGaussPts()
Get coordinates at integration points assuming linear geometry.
Definition: ForcesAndSourcesCore.hpp:1269
QuadOpLhs::A
SmartPetscObj< Mat > A
Definition: quad_polynomial_approximation.cpp:80
F
@ F
Definition: free_surface.cpp:394