v0.14.0
Loading...
Searching...
No Matches
quad_polynomial_approximation.cpp

Checking approximation functions for quad.

Checking approximation functions for quad

/** \file quad_polynomial_approximation.cpp
\example quad_polynomial_approximation.cpp
\brief Checking approximation functions for quad
*/
#include <MoFEM.hpp>
using namespace MoFEM;
using OpEle = FaceElementForcesAndSourcesCore::UserDataOperator;
static char help[] = "...\n\n";
static constexpr int approx_order = 6;
static inline double fun(double x, double y) {
double r = 1;
for (int o = 1; o <= approx_order; ++o) {
for (int i = 0; i <= o; ++i) {
int j = o - i;
if (j >= 0)
r += pow(x, i) * pow(y, j);
}
}
return r;
}
static inline VectorDouble3 diff_fun(double x, double y) {
VectorDouble3 r(2);
r.clear();
for (int o = 1; o <= approx_order; ++o) {
for (int i = 0; i <= o; ++i) {
int j = o - i;
if (j >= 0) {
r[0] += i > 0 ? i * pow(x, i - 1) * pow(y, j) : 0;
r[1] += j > 0 ? j * pow(x, i) * pow(y, j - 1) : 0;
}
}
}
return r;
}
};
struct QuadOpCheck : public OpEle {
QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
boost::shared_ptr<MatrixDouble> &diff_field_vals);
private:
boost::shared_ptr<VectorDouble> fieldVals;
boost::shared_ptr<MatrixDouble> diffFieldVals;
};
struct QuadOpRhs : public OpEle {
private:
};
struct QuadOpLhs : public OpEle {
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
EntityType col_type,
private:
};
int main(int argc, char *argv[]) {
MoFEM::Core::Initialize(&argc, &argv, (char *)0, help);
try {
// Declare elements
enum bases {
AINSWORTH,
AINSWORTH_LOBATTO,
DEMKOWICZ,
BERNSTEIN,
LASBASETOP
};
const char *list_bases[] = {"ainsworth", "ainsworth_labatto", "demkowicz",
"bernstein"};
PetscBool flg;
PetscInt choice_base_value = AINSWORTH;
CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-base", list_bases,
LASBASETOP, &choice_base_value, &flg);
if (flg != PETSC_TRUE)
SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "base not set");
if (choice_base_value == AINSWORTH)
if (choice_base_value == AINSWORTH_LOBATTO)
else if (choice_base_value == DEMKOWICZ)
else if (choice_base_value == BERNSTEIN)
enum spaces { H1SPACE, L2SPACE, LASBASETSPACE };
const char *list_spaces[] = {"h1", "l2"};
PetscInt choice_space_value = H1SPACE;
CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-space", list_spaces,
LASBASETSPACE, &choice_space_value, &flg);
if (flg != PETSC_TRUE)
SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "space not set");
FieldSpace space = H1;
if (choice_space_value == H1SPACE)
space = H1;
else if (choice_space_value == L2SPACE)
space = L2;
moab::Core mb_instance;
moab::Interface &moab = mb_instance;
std::array<double, 12> one_quad_coords = {0, 0, 0,
2, 0, 0,
1, 1, 0,
0, 1, 0};
std::array<EntityHandle, 4> one_quad_nodes;
for (int n = 0; n != 4; ++n)
CHKERR moab.create_vertex(&one_quad_coords[3 * n], one_quad_nodes[n]);
EntityHandle one_quad;
CHKERR moab.create_element(MBQUAD, one_quad_nodes.data(), 4, one_quad);
Range one_quad_range;
one_quad_range.insert(one_quad);
Range one_quad_adj_ents;
CHKERR moab.get_adjacencies(one_quad_range, 1, true, one_quad_adj_ents,
moab::Interface::UNION);
MoFEM::Core core(moab);
MoFEM::Interface &m_field = core;
BitRefLevel bit_level0 = BitRefLevel().set(0);
CHKERR m_field.getInterface<BitRefManager>()->setBitRefLevelByDim(
0, 2, bit_level0);
// Fields
CHKERR m_field.add_field("FIELD1", space, base, 1);
CHKERR m_field.add_ents_to_field_by_type(0, MBQUAD, "FIELD1");
CHKERR m_field.set_field_order(0, MBVERTEX, "FIELD1", 1);
CHKERR m_field.set_field_order(0, MBEDGE, "FIELD1", approx_order + 1);
CHKERR m_field.set_field_order(0, MBQUAD, "FIELD1", approx_order + 1);
CHKERR m_field.build_fields();
// FE
CHKERR m_field.add_finite_element("QUAD");
// Define rows/cols and element data
CHKERR m_field.modify_finite_element_add_field_row("QUAD", "FIELD1");
CHKERR m_field.modify_finite_element_add_field_col("QUAD", "FIELD1");
CHKERR m_field.modify_finite_element_add_field_data("QUAD", "FIELD1");
CHKERR m_field.add_ents_to_finite_element_by_type(0, MBQUAD, "QUAD");
// build finite elemnts
// //build adjacencies
CHKERR m_field.build_adjacencies(bit_level0);
// Problem
CHKERR m_field.add_problem("TEST_PROBLEM");
// set finite elements for problem
CHKERR m_field.modify_problem_add_finite_element("TEST_PROBLEM", "QUAD");
// set refinement level for problem
CHKERR m_field.modify_problem_ref_level_add_bit("TEST_PROBLEM", bit_level0);
// build problem
ProblemsManager *prb_mng_ptr;
CHKERR m_field.getInterface(prb_mng_ptr);
CHKERR prb_mng_ptr->buildProblem("TEST_PROBLEM", true);
// partition
CHKERR prb_mng_ptr->partitionSimpleProblem("TEST_PROBLEM");
CHKERR prb_mng_ptr->partitionFiniteElements("TEST_PROBLEM");
// what are ghost nodes, see Petsc Manual
CHKERR prb_mng_ptr->partitionGhostDofs("TEST_PROBLEM");
// Create matrices
->createMPIAIJWithArrays<PetscGlobalIdx_mi_tag>("TEST_PROBLEM", A);
CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
ROW, F);
CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
COL, D);
auto rule = [&](int, int, int p) { return 2 * (p + 1); };
auto assemble_matrices_and_vectors = [&]() {
Ele fe(m_field);
fe.getRuleHook = rule;
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
auto det_ptr = boost::make_shared<VectorDouble>();
fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
fe.getOpPtrVector().push_back(
new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
fe.getOpPtrVector().push_back(new QuadOpRhs(F));
fe.getOpPtrVector().push_back(new QuadOpLhs(A));
CHKERR VecZeroEntries(F);
CHKERR MatZeroEntries(A);
CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
CHKERR VecAssemblyBegin(F);
CHKERR VecAssemblyEnd(F);
CHKERR MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
CHKERR MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
};
auto solve_problem = [&] {
auto solver = createKSP(PETSC_COMM_WORLD);
CHKERR KSPSetOperators(solver, A, A);
CHKERR KSPSetFromOptions(solver);
CHKERR KSPSetUp(solver);
CHKERR KSPSolve(solver, F, D);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR m_field.getInterface<VecManager>()->setLocalGhostVector(
"TEST_PROBLEM", COL, D, INSERT_VALUES, SCATTER_REVERSE);
};
auto check_solution = [&] {
Ele fe(m_field);
fe.getRuleHook = rule;
auto field_vals_ptr = boost::make_shared<VectorDouble>();
auto diff_field_vals_ptr = boost::make_shared<MatrixDouble>();
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
auto det_ptr = boost::make_shared<VectorDouble>();
fe.getOpPtrVector().push_back(
new OpCalculateScalarFieldValues("FIELD1", field_vals_ptr));
fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
fe.getOpPtrVector().push_back(
new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
fe.getOpPtrVector().push_back(new OpCalculateScalarFieldGradient<2>(
"FIELD1", diff_field_vals_ptr, space == L2 ? MBQUAD : MBVERTEX));
fe.getOpPtrVector().push_back(
new QuadOpCheck(field_vals_ptr, diff_field_vals_ptr));
CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
};
CHKERR assemble_matrices_and_vectors();
CHKERR solve_problem();
CHKERR check_solution();
}
return 0;
}
QuadOpCheck::QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
boost::shared_ptr<MatrixDouble> &diff_field_vals)
: OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
fieldVals(field_vals), diffFieldVals(diff_field_vals) {}
if (type == MBQUAD) {
const int nb_gauss_pts = data.getN().size1();
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double f = ApproxFunction::fun(t_coords(0), t_coords(1));
constexpr double eps = 1e-6;
std::cout << f - (*fieldVals)[gg] << std::endl;
if (std::abs(f - (*fieldVals)[gg]) > eps)
SETERRQ3(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong value %d : %6.4e != %6.4e", gg, f, (*fieldVals)[gg]);
VectorDouble3 diff_f = ApproxFunction::diff_fun(t_coords(0), t_coords(1));
for (auto d : {0, 1})
std::cout << diff_f[d] - (*diffFieldVals)(d, gg) << " ";
std::cout << std::endl;
for (auto d : {0, 1})
if (std::abs(diff_f[d] - (*diffFieldVals)(d, gg)) > eps)
SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong derivative value (%d) %6.4e != %6.4e", diff_f[d],
(*diffFieldVals)(d, gg));
++t_coords;
}
}
}
: OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
F(f) {}
FTensor::Index<'i', 3> i;
const int nb_dofs = data.getIndices().size();
if (nb_dofs) {
const int nb_gauss_pts = data.getN().size1();
VectorDouble nf(nb_dofs);
nf.clear();
auto t_base = data.getFTensor0N();
auto t_coords = getFTensor1CoordsAtGaussPts();
auto a = getMeasure();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double f = ApproxFunction::fun(t_coords(0), t_coords(1));
double v = a * t_w * f;
double *val = &*nf.begin();
for (int bb = 0; bb != nb_dofs; ++bb) {
*val += v * t_base;
++t_base;
++val;
}
++t_coords;
++t_w;
// ++t_normal;
}
CHKERR VecSetValues(F, data, &*nf.data().begin(), ADD_VALUES);
}
}
: OpEle("FIELD1", "FIELD1",
A(a) {
// FIXME: Can be symmetric, is not for simplicity
sYmm = false;
}
MoFEMErrorCode QuadOpLhs::doWork(int row_side, int col_side,
EntityType row_type, EntityType col_type,
FTensor::Index<'i', 3> i;
const int row_nb_dofs = row_data.getIndices().size();
const int col_nb_dofs = col_data.getIndices().size();
if (row_nb_dofs && col_nb_dofs) {
const int nb_gauss_pts = row_data.getN().size1();
MatrixDouble m(row_nb_dofs, col_nb_dofs);
m.clear();
auto a = getMeasure();
double *row_base_ptr = &*row_data.getN().data().begin();
double *col_base_ptr = &*col_data.getN().data().begin();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double v = a * t_w;
cblas_dger(CblasRowMajor, row_nb_dofs, col_nb_dofs, v, row_base_ptr, 1,
col_base_ptr, 1, &*m.data().begin(), col_nb_dofs);
row_base_ptr += row_nb_dofs;
col_base_ptr += col_nb_dofs;
++t_w;
}
CHKERR MatSetValues(A, row_data, col_data, &*m.data().begin(), ADD_VALUES);
}
}
static Index< 'o', 3 > o
static Index< 'p', 3 > p
ForcesAndSourcesCore::UserDataOperator UserDataOperator
static char help[]
int main()
constexpr double a
static const double eps
@ COL
@ ROW
#define CATCH_ERRORS
Catch errors.
FieldApproximationBase
approximation base
Definition definitions.h:58
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition definitions.h:60
@ AINSWORTH_LOBATTO_BASE
Definition definitions.h:62
@ DEMKOWICZ_JACOBI_BASE
Definition definitions.h:66
@ AINSWORTH_BERNSTEIN_BEZIER_BASE
Definition definitions.h:64
FieldSpace
approximation spaces
Definition definitions.h:82
@ L2
field with C-1 continuity
Definition definitions.h:88
@ H1
continuous field
Definition definitions.h:85
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_IMPOSSIBLE_CASE
Definition definitions.h:35
@ MOFEM_ATOM_TEST_INVALID
Definition definitions.h:40
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
auto fun
Function to approximate.
FTensor::Index< 'n', SPACE_DIM > n
FTensor::Index< 'm', SPACE_DIM > m
@ F
virtual MoFEMErrorCode add_finite_element(const std::string &fe_name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
add finite element
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
virtual MoFEMErrorCode modify_finite_element_add_field_col(const std::string &fe_name, const std::string name_row)=0
set field col which finite element use
virtual MoFEMErrorCode add_ents_to_finite_element_by_type(const EntityHandle entities, const EntityType type, const std::string &name, const bool recursive=true)=0
add entities to finite element
virtual MoFEMErrorCode modify_finite_element_add_field_data(const std::string &fe_name, const std::string name_filed)=0
set finite element field data
virtual MoFEMErrorCode modify_finite_element_add_field_row(const std::string &fe_name, const std::string name_row)=0
set field row which finite element use
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
virtual MoFEMErrorCode add_ents_to_field_by_type(const Range &ents, const EntityType type, const std::string &name, int verb=DEFAULT_VERBOSITY)=0
Add entities to field meshset.
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
MoFEMErrorCode partitionGhostDofs(const std::string name, int verb=VERBOSE)
determine ghost nodes
MoFEMErrorCode partitionSimpleProblem(const std::string name, int verb=VERBOSE)
partition problem dofs
MoFEMErrorCode buildProblem(const std::string name, const bool square_matrix, int verb=VERBOSE)
build problem data structures
MoFEMErrorCode partitionFiniteElements(const std::string name, bool part_from_moab=false, int low_proc=-1, int hi_proc=-1, int verb=VERBOSE)
partition finite elements
virtual MoFEMErrorCode add_problem(const std::string &name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add problem.
virtual MoFEMErrorCode modify_problem_ref_level_add_bit(const std::string &name_problem, const BitRefLevel &bit)=0
add ref level to problem
virtual MoFEMErrorCode modify_problem_add_finite_element(const std::string name_problem, const std::string &fe_name)=0
add finite element to problem, this add entities assigned to finite element to a particular problem
FTensor::Index< 'i', SPACE_DIM > i
auto diff_fun
Function derivative.
double D
const double v
phase velocity of light in medium (cm/ns)
FTensor::Index< 'j', 3 > j
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
implementation of Data Operators for Forces and Sources
Definition Common.hpp:10
auto createKSP(MPI_Comm comm)
MoFEMErrorCode MatSetValues(Mat M, const EntitiesFieldData::EntData &row_data, const EntitiesFieldData::EntData &col_data, const double *ptr, InsertMode iora)
Assemble PETSc matrix.
PetscErrorCode PetscOptionsGetEList(PetscOptions *, const char pre[], const char name[], const char *const *list, PetscInt next, PetscInt *value, PetscBool *set)
MoFEMErrorCode VecSetValues(Vec V, const EntitiesFieldData::EntData &data, const double *ptr, InsertMode iora)
Assemble PETSc vector.
float d
Definition sdf_hertz.py:5
constexpr AssemblyType A
static constexpr int approx_order
static constexpr int approx_order
static VectorDouble3 diff_fun(double x, double y, double z)
static double fun(double x, double y, double z)
Managing BitRefLevels.
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
virtual MoFEMErrorCode add_field(const std::string &name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add field.
Core (interface) class.
Definition Core.hpp:82
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition Core.cpp:72
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition Core.cpp:112
Deprecated interface functions.
Data on single entity (This is passed as argument to DataOperator::doWork)
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorInt & getIndices() const
Get global indices of dofs on entity.
auto getFTensor1CoordsAtGaussPts()
Get coordinates at integration points assuming linear geometry.
auto getFTensor0IntegrationWeight()
Get integration weights.
double getMeasure() const
get measure of element
structure to get information form mofem into EntitiesFieldData
Matrix manager is used to build and partition problems.
Get field gradients at integration pts for scalar filed rank 0, i.e. vector field.
Get value at integration points for scalar field.
Set inverse jacobian to base functions.
Modify integration weights on face to take in account higher-order geometry.
Problem manager is used to build and partition problems.
intrusive_ptr for managing petsc objects
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface refernce to pointer of interface.
Vector manager is used to create vectors \mofem_vectors.
boost::shared_ptr< VectorDouble > fieldVals
boost::shared_ptr< MatrixDouble > diffFieldVals
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.
QuadOpCheck(boost::shared_ptr< VectorDouble > &field_vals, boost::shared_ptr< MatrixDouble > &diff_field_vals)
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)
Operator for bi-linear form, usually to calculate values on left hand side.
QuadOpLhs(SmartPetscObj< Mat > &a)
SmartPetscObj< Mat > A
SmartPetscObj< Vec > F
QuadOpRhs(SmartPetscObj< Vec > &f)
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.