v0.14.0
quad_polynomial_approximation.cpp

Checking approximation functions for quad

/** \file quad_polynomial_approximation.cpp
\example quad_polynomial_approximation.cpp
\brief Checking approximation functions for quad
*/
#include <MoFEM.hpp>
using namespace MoFEM;
static char help[] = "...\n\n";
static constexpr int approx_order = 6;
static inline double fun(double x, double y) {
double r = 1;
for (int o = 1; o <= approx_order; ++o) {
for (int i = 0; i <= o; ++i) {
int j = o - i;
if (j >= 0)
r += pow(x, i) * pow(y, j);
}
}
return r;
}
static inline VectorDouble3 diff_fun(double x, double y) {
r.clear();
for (int o = 1; o <= approx_order; ++o) {
for (int i = 0; i <= o; ++i) {
int j = o - i;
if (j >= 0) {
r[0] += i > 0 ? i * pow(x, i - 1) * pow(y, j) : 0;
r[1] += j > 0 ? j * pow(x, i) * pow(y, j - 1) : 0;
}
}
}
return r;
}
};
struct QuadOpCheck : public OpEle {
QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
boost::shared_ptr<MatrixDouble> &diff_field_vals);
MoFEMErrorCode doWork(int side, EntityType type,
private:
boost::shared_ptr<VectorDouble> fieldVals;
boost::shared_ptr<MatrixDouble> diffFieldVals;
};
struct QuadOpRhs : public OpEle {
MoFEMErrorCode doWork(int side, EntityType type,
private:
};
struct QuadOpLhs : public OpEle {
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
EntityType col_type,
private:
};
int main(int argc, char *argv[]) {
MoFEM::Core::Initialize(&argc, &argv, (char *)0, help);
try {
// Declare elements
enum bases {
AINSWORTH,
AINSWORTH_LOBATTO,
DEMKOWICZ,
BERNSTEIN,
LASBASETOP
};
const char *list_bases[] = {"ainsworth", "ainsworth_labatto", "demkowicz",
"bernstein"};
PetscBool flg;
PetscInt choice_base_value = AINSWORTH;
CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-base", list_bases,
LASBASETOP, &choice_base_value, &flg);
if (flg != PETSC_TRUE)
SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "base not set");
if (choice_base_value == AINSWORTH)
if (choice_base_value == AINSWORTH_LOBATTO)
else if (choice_base_value == DEMKOWICZ)
else if (choice_base_value == BERNSTEIN)
enum spaces { H1SPACE, L2SPACE, LASBASETSPACE };
const char *list_spaces[] = {"h1", "l2"};
PetscInt choice_space_value = H1SPACE;
CHKERR PetscOptionsGetEList(PETSC_NULL, NULL, "-space", list_spaces,
LASBASETSPACE, &choice_space_value, &flg);
if (flg != PETSC_TRUE)
SETERRQ(PETSC_COMM_SELF, MOFEM_IMPOSSIBLE_CASE, "space not set");
FieldSpace space = H1;
if (choice_space_value == H1SPACE)
space = H1;
else if (choice_space_value == L2SPACE)
space = L2;
moab::Core mb_instance;
moab::Interface &moab = mb_instance;
std::array<double, 12> one_quad_coords = {0, 0, 0,
2, 0, 0,
1, 1, 0,
0, 1, 0};
std::array<EntityHandle, 4> one_quad_nodes;
for (int n = 0; n != 4; ++n)
CHKERR moab.create_vertex(&one_quad_coords[3 * n], one_quad_nodes[n]);
EntityHandle one_quad;
CHKERR moab.create_element(MBQUAD, one_quad_nodes.data(), 4, one_quad);
Range one_quad_range;
one_quad_range.insert(one_quad);
Range one_quad_adj_ents;
CHKERR moab.get_adjacencies(one_quad_range, 1, true, one_quad_adj_ents,
moab::Interface::UNION);
MoFEM::Core core(moab);
MoFEM::Interface &m_field = core;
BitRefLevel bit_level0 = BitRefLevel().set(0);
CHKERR m_field.getInterface<BitRefManager>()->setBitRefLevelByDim(
0, 2, bit_level0);
// Fields
CHKERR m_field.add_field("FIELD1", space, base, 1);
CHKERR m_field.add_ents_to_field_by_type(0, MBQUAD, "FIELD1");
CHKERR m_field.set_field_order(0, MBVERTEX, "FIELD1", 1);
CHKERR m_field.set_field_order(0, MBEDGE, "FIELD1", approx_order + 1);
CHKERR m_field.set_field_order(0, MBQUAD, "FIELD1", approx_order + 1);
CHKERR m_field.build_fields();
// FE
CHKERR m_field.add_finite_element("QUAD");
// Define rows/cols and element data
CHKERR m_field.modify_finite_element_add_field_row("QUAD", "FIELD1");
CHKERR m_field.modify_finite_element_add_field_col("QUAD", "FIELD1");
CHKERR m_field.modify_finite_element_add_field_data("QUAD", "FIELD1");
CHKERR m_field.add_ents_to_finite_element_by_type(0, MBQUAD, "QUAD");
// build finite elemnts
// //build adjacencies
CHKERR m_field.build_adjacencies(bit_level0);
// Problem
CHKERR m_field.add_problem("TEST_PROBLEM");
// set finite elements for problem
CHKERR m_field.modify_problem_add_finite_element("TEST_PROBLEM", "QUAD");
// set refinement level for problem
CHKERR m_field.modify_problem_ref_level_add_bit("TEST_PROBLEM", bit_level0);
// build problem
ProblemsManager *prb_mng_ptr;
CHKERR m_field.getInterface(prb_mng_ptr);
CHKERR prb_mng_ptr->buildProblem("TEST_PROBLEM", true);
// partition
CHKERR prb_mng_ptr->partitionSimpleProblem("TEST_PROBLEM");
CHKERR prb_mng_ptr->partitionFiniteElements("TEST_PROBLEM");
// what are ghost nodes, see Petsc Manual
CHKERR prb_mng_ptr->partitionGhostDofs("TEST_PROBLEM");
// Create matrices
->createMPIAIJWithArrays<PetscGlobalIdx_mi_tag>("TEST_PROBLEM", A);
CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
ROW, F);
CHKERR m_field.getInterface<VecManager>()->vecCreateGhost("TEST_PROBLEM",
COL, D);
auto rule = [&](int, int, int p) { return 2 * (p + 1); };
auto assemble_matrices_and_vectors = [&]() {
Ele fe(m_field);
fe.getRuleHook = rule;
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
auto det_ptr = boost::make_shared<VectorDouble>();
fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
fe.getOpPtrVector().push_back(
new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
fe.getOpPtrVector().push_back(new QuadOpRhs(F));
fe.getOpPtrVector().push_back(new QuadOpLhs(A));
CHKERR VecZeroEntries(F);
CHKERR MatZeroEntries(A);
CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
CHKERR VecAssemblyBegin(F);
CHKERR VecAssemblyEnd(F);
CHKERR MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
CHKERR MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
};
auto solve_problem = [&] {
auto solver = createKSP(PETSC_COMM_WORLD);
CHKERR KSPSetOperators(solver, A, A);
CHKERR KSPSetFromOptions(solver);
CHKERR KSPSetUp(solver);
CHKERR KSPSolve(solver, F, D);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR m_field.getInterface<VecManager>()->setLocalGhostVector(
"TEST_PROBLEM", COL, D, INSERT_VALUES, SCATTER_REVERSE);
};
auto check_solution = [&] {
Ele fe(m_field);
fe.getRuleHook = rule;
auto field_vals_ptr = boost::make_shared<VectorDouble>();
auto diff_field_vals_ptr = boost::make_shared<MatrixDouble>();
auto jac_ptr = boost::make_shared<MatrixDouble>();
auto inv_jac_ptr = boost::make_shared<MatrixDouble>();
auto det_ptr = boost::make_shared<VectorDouble>();
fe.getOpPtrVector().push_back(
new OpCalculateScalarFieldValues("FIELD1", field_vals_ptr));
fe.getOpPtrVector().push_back(new OpCalculateHOJac<2>(jac_ptr));
fe.getOpPtrVector().push_back(
new OpInvertMatrix<2>(jac_ptr, det_ptr, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(H1, inv_jac_ptr));
fe.getOpPtrVector().push_back(
new OpSetHOInvJacToScalarBases<2>(L2, inv_jac_ptr));
fe.getOpPtrVector().push_back(new OpSetHOWeightsOnFace());
fe.getOpPtrVector().push_back(new OpCalculateScalarFieldGradient<2>(
"FIELD1", diff_field_vals_ptr, space == L2 ? MBQUAD : MBVERTEX));
fe.getOpPtrVector().push_back(
new QuadOpCheck(field_vals_ptr, diff_field_vals_ptr));
CHKERR m_field.loop_finite_elements("TEST_PROBLEM", "QUAD", fe);
};
CHKERR assemble_matrices_and_vectors();
CHKERR solve_problem();
CHKERR check_solution();
}
return 0;
}
QuadOpCheck::QuadOpCheck(boost::shared_ptr<VectorDouble> &field_vals,
boost::shared_ptr<MatrixDouble> &diff_field_vals)
: OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
fieldVals(field_vals), diffFieldVals(diff_field_vals) {}
if (type == MBQUAD) {
const int nb_gauss_pts = data.getN().size1();
auto t_coords = getFTensor1CoordsAtGaussPts();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double f = ApproxFunction::fun(t_coords(0), t_coords(1));
constexpr double eps = 1e-6;
std::cout << f - (*fieldVals)[gg] << std::endl;
if (std::abs(f - (*fieldVals)[gg]) > eps)
SETERRQ3(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong value %d : %6.4e != %6.4e", gg, f, (*fieldVals)[gg]);
VectorDouble3 diff_f = ApproxFunction::diff_fun(t_coords(0), t_coords(1));
for (auto d : {0, 1})
std::cout << diff_f[d] - (*diffFieldVals)(d, gg) << " ";
std::cout << std::endl;
for (auto d : {0, 1})
if (std::abs(diff_f[d] - (*diffFieldVals)(d, gg)) > eps)
SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong derivative value (%d) %6.4e != %6.4e", diff_f[d],
(*diffFieldVals)(d, gg));
++t_coords;
}
}
}
: OpEle("FIELD1", "FIELD1", ForcesAndSourcesCore::UserDataOperator::OPROW),
F(f) {}
MoFEMErrorCode QuadOpRhs::doWork(int side, EntityType type,
const int nb_dofs = data.getIndices().size();
if (nb_dofs) {
const int nb_gauss_pts = data.getN().size1();
VectorDouble nf(nb_dofs);
nf.clear();
auto t_base = data.getFTensor0N();
auto t_coords = getFTensor1CoordsAtGaussPts();
auto a = getMeasure();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double f = ApproxFunction::fun(t_coords(0), t_coords(1));
double v = a * t_w * f;
double *val = &*nf.begin();
for (int bb = 0; bb != nb_dofs; ++bb) {
*val += v * t_base;
++t_base;
++val;
}
++t_coords;
++t_w;
// ++t_normal;
}
CHKERR VecSetValues(F, data, &*nf.data().begin(), ADD_VALUES);
}
}
: OpEle("FIELD1", "FIELD1",
A(a) {
// FIXME: Can be symmetric, is not for simplicity
sYmm = false;
}
MoFEMErrorCode QuadOpLhs::doWork(int row_side, int col_side,
EntityType row_type, EntityType col_type,
const int row_nb_dofs = row_data.getIndices().size();
const int col_nb_dofs = col_data.getIndices().size();
if (row_nb_dofs && col_nb_dofs) {
const int nb_gauss_pts = row_data.getN().size1();
MatrixDouble m(row_nb_dofs, col_nb_dofs);
m.clear();
auto a = getMeasure();
double *row_base_ptr = &*row_data.getN().data().begin();
double *col_base_ptr = &*col_data.getN().data().begin();
for (int gg = 0; gg != nb_gauss_pts; ++gg) {
double v = a * t_w;
cblas_dger(CblasRowMajor, row_nb_dofs, col_nb_dofs, v, row_base_ptr, 1,
col_base_ptr, 1, &*m.data().begin(), col_nb_dofs);
row_base_ptr += row_nb_dofs;
col_base_ptr += col_nb_dofs;
++t_w;
}
CHKERR MatSetValues(A, row_data, col_data, &*m.data().begin(), ADD_VALUES);
}
}
MoFEM::UnknownInterface::getInterface
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface reference to pointer of interface.
Definition: UnknownInterface.hpp:93
MoFEM::EntitiesFieldData::EntData
Data on single entity (This is passed as argument to DataOperator::doWork)
Definition: EntitiesFieldData.hpp:128
QuadOpCheck::QuadOpCheck
QuadOpCheck(boost::shared_ptr< VectorDouble > &field_vals, boost::shared_ptr< MatrixDouble > &diff_field_vals)
Definition: quad_polynomial_approximation.cpp:291
MoFEM::CoreInterface::loop_finite_elements
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
MoFEM::ProblemsManager::buildProblem
MoFEMErrorCode buildProblem(const std::string name, const bool square_matrix, int verb=VERBOSE)
build problem data structures
Definition: ProblemsManager.cpp:87
MoFEM::CoreTmp< 0 >
Core (interface) class.
Definition: Core.hpp:82
H1
@ H1
continuous field
Definition: definitions.h:85
MoFEM::MatSetValues
MoFEMErrorCode MatSetValues(Mat M, const EntitiesFieldData::EntData &row_data, const EntitiesFieldData::EntData &col_data, const double *ptr, InsertMode iora)
Assemble PETSc matrix.
Definition: EntitiesFieldData.hpp:1634
QuadOpCheck
Definition: quad_polynomial_approximation.cpp:49
MoFEM::Types::VectorDouble3
VectorBoundedArray< double, 3 > VectorDouble3
Definition: Types.hpp:92
EntityHandle
MoFEM::ProblemsManager
Problem manager is used to build and partition problems.
Definition: ProblemsManager.hpp:21
MoFEM::CoreInterface::modify_finite_element_add_field_row
virtual MoFEMErrorCode modify_finite_element_add_field_row(const std::string &fe_name, const std::string name_row)=0
set field row which finite element use
L2
@ L2
field with C-1 continuity
Definition: definitions.h:88
MoFEM::Exceptions::MoFEMErrorCode
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
MoFEM::Types::MatrixDouble
UBlasMatrix< double > MatrixDouble
Definition: Types.hpp:77
MoFEM::OpSetHOInvJacToScalarBases< 2 >
Definition: HODataOperators.hpp:78
MoFEM.hpp
A
constexpr AssemblyType A
Definition: operators_tests.cpp:30
MoFEM::CoreTmp< 0 >::Finalize
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:112
MoFEM::createKSP
auto createKSP(MPI_Comm comm)
Definition: PetscSmartObj.hpp:261
MOFEM_IMPOSSIBLE_CASE
@ MOFEM_IMPOSSIBLE_CASE
Definition: definitions.h:35
MoFEM::VecSetValues
MoFEMErrorCode VecSetValues(Vec V, const EntitiesFieldData::EntData &data, const double *ptr, InsertMode iora)
Assemble PETSc vector.
Definition: EntitiesFieldData.hpp:1579
sdf.r
int r
Definition: sdf.py:8
MoFEM::CoreInterface::add_ents_to_field_by_type
virtual MoFEMErrorCode add_ents_to_field_by_type(const Range &ents, const EntityType type, const std::string &name, int verb=DEFAULT_VERBOSITY)=0
Add entities to field meshset.
MoFEM::OpCalculateHOJac< 2 >
Definition: HODataOperators.hpp:273
MoFEM::ForcesAndSourcesCore::UserDataOperator::getFTensor0IntegrationWeight
auto getFTensor0IntegrationWeight()
Get integration weights.
Definition: ForcesAndSourcesCore.hpp:1240
MoFEM::DeprecatedCoreInterface
Deprecated interface functions.
Definition: DeprecatedCoreInterface.hpp:16
MoFEM::ForcesAndSourcesCore::UserDataOperator::getMeasure
double getMeasure() const
get measure of element
Definition: ForcesAndSourcesCore.hpp:1275
MoFEM::OpCalculateScalarFieldGradient
Get field gradients at integration pts for scalar filed rank 0, i.e. vector field.
Definition: UserDataOperators.hpp:1293
ROW
@ ROW
Definition: definitions.h:136
MoFEM::Interface
DeprecatedCoreInterface Interface
Definition: Interface.hpp:2002
MoFEM::EntitiesFieldData::EntData::getFTensor0N
FTensor::Tensor0< FTensor::PackPtr< double *, 1 > > getFTensor0N(const FieldApproximationBase base)
Get base function as Tensor0.
Definition: EntitiesFieldData.hpp:1492
FieldSpace
FieldSpace
approximation spaces
Definition: definitions.h:82
MoFEM::CoreInterface::add_ents_to_finite_element_by_type
virtual MoFEMErrorCode add_ents_to_finite_element_by_type(const EntityHandle entities, const EntityType type, const std::string &name, const bool recursive=true)=0
add entities to finite element
EntData
EntitiesFieldData::EntData EntData
Definition: quad_polynomial_approximation.cpp:15
CHKERR
#define CHKERR
Inline error check.
Definition: definitions.h:548
ApproxFunction
Definition: prism_polynomial_approximation.cpp:16
MoFEM::FaceElementForcesAndSourcesCore::UserDataOperator
friend class UserDataOperator
Definition: FaceElementForcesAndSourcesCore.hpp:86
MoFEM::CoreInterface::add_finite_element
virtual MoFEMErrorCode add_finite_element(const std::string &fe_name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
add finite element
MoFEM
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
MoFEM::CoreInterface::modify_finite_element_add_field_col
virtual MoFEMErrorCode modify_finite_element_add_field_col(const std::string &fe_name, const std::string name_row)=0
set field col which finite element use
a
constexpr double a
Definition: approx_sphere.cpp:30
QuadOpLhs::doWork
MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type, EntityType col_type, EntitiesFieldData::EntData &row_data, EntitiesFieldData::EntData &col_data)
Operator for bi-linear form, usually to calculate values on left hand side.
Definition: quad_polynomial_approximation.cpp:372
MoFEM::CoreInterface::build_finite_elements
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
MoFEM::ForcesAndSourcesCore::UserDataOperator
Definition: ForcesAndSourcesCore.hpp:549
QuadOpCheck::diffFieldVals
boost::shared_ptr< MatrixDouble > diffFieldVals
Definition: quad_polynomial_approximation.cpp:58
MoFEM::FaceElementForcesAndSourcesCore::UserDataOperator
default operator for TRI element
Definition: FaceElementForcesAndSourcesCore.hpp:94
MoFEM::CoreInterface::add_field
virtual MoFEMErrorCode add_field(const std::string &name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add field.
convert.type
type
Definition: convert.py:64
MoFEM::OpCalculateScalarFieldValues
Get value at integration points for scalar field.
Definition: UserDataOperators.hpp:82
COL
@ COL
Definition: definitions.h:136
MoFEM::EntitiesFieldData::EntData::getIndices
const VectorInt & getIndices() const
Get global indices of dofs on entity.
Definition: EntitiesFieldData.hpp:1204
MoFEM::OpSetHOWeightsOnFace
Modify integration weights on face to take in account higher-order geometry.
Definition: HODataOperators.hpp:122
MoFEM::FaceElementForcesAndSourcesCore
Face finite element.
Definition: FaceElementForcesAndSourcesCore.hpp:23
QuadOpRhs::doWork
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.
Definition: quad_polynomial_approximation.cpp:333
ApproxFunction::diff_fun
static VectorDouble3 diff_fun(double x, double y, double z)
Definition: prism_polynomial_approximation.cpp:32
AINSWORTH_LOBATTO_BASE
@ AINSWORTH_LOBATTO_BASE
Definition: definitions.h:62
QuadOpCheck::fieldVals
boost::shared_ptr< VectorDouble > fieldVals
Definition: quad_polynomial_approximation.cpp:57
QuadOpRhs::F
SmartPetscObj< Vec > F
Definition: quad_polynomial_approximation.cpp:68
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
MoFEM::ProblemsManager::partitionFiniteElements
MoFEMErrorCode partitionFiniteElements(const std::string name, bool part_from_moab=false, int low_proc=-1, int hi_proc=-1, int verb=VERBOSE)
partition finite elements
Definition: ProblemsManager.cpp:2167
MoFEM::CoreInterface::modify_problem_ref_level_add_bit
virtual MoFEMErrorCode modify_problem_ref_level_add_bit(const std::string &name_problem, const BitRefLevel &bit)=0
add ref level to problem
MoFEM::VecManager
Vector manager is used to create vectors \mofem_vectors.
Definition: VecManager.hpp:23
QuadOpLhs
Definition: quad_polynomial_approximation.cpp:71
FTensor::Index< 'i', 3 >
AINSWORTH_BERNSTEIN_BEZIER_BASE
@ AINSWORTH_BERNSTEIN_BEZIER_BASE
Definition: definitions.h:64
QuadOpCheck::doWork
MoFEMErrorCode doWork(int side, EntityType type, EntitiesFieldData::EntData &data)
Operator for linear form, usually to calculate values on right hand side.
Definition: quad_polynomial_approximation.cpp:296
MoFEM::MatrixManager
Matrix manager is used to build and partition problems.
Definition: MatrixManager.hpp:21
convert.n
n
Definition: convert.py:82
diff_fun
auto diff_fun
Function derivative.
Definition: higher_derivatives.cpp:45
MoFEM::ForcesAndSourcesCore
structure to get information form mofem into EntitiesFieldData
Definition: ForcesAndSourcesCore.hpp:22
QuadOpRhs::QuadOpRhs
QuadOpRhs(SmartPetscObj< Vec > &f)
Definition: quad_polynomial_approximation.cpp:329
v
const double v
phase velocity of light in medium (cm/ns)
Definition: initial_diffusion.cpp:40
Range
QuadOpRhs
Definition: quad_polynomial_approximation.cpp:61
MoFEM::CoreTmp< 0 >::Initialize
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:72
ApproxFunction::fun
static double fun(double x, double y, double z)
Definition: prism_polynomial_approximation.cpp:17
CATCH_ERRORS
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:385
DEMKOWICZ_JACOBI_BASE
@ DEMKOWICZ_JACOBI_BASE
Definition: definitions.h:66
MoFEM::EntitiesFieldData::EntData::getN
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
Definition: EntitiesFieldData.hpp:1308
MoFEM::Core
CoreTmp< 0 > Core
Definition: Core.hpp:1140
MoFEM::ProblemsManager::partitionSimpleProblem
MoFEMErrorCode partitionSimpleProblem(const std::string name, int verb=VERBOSE)
partition problem dofs
Definition: ProblemsManager.cpp:1537
HenckyOps::f
auto f
Definition: HenckyOps.hpp:15
j
FTensor::Index< 'j', 3 > j
Definition: matrix_function.cpp:19
eps
static const double eps
Definition: check_base_functions_derivatives_on_tet.cpp:11
approx_order
int approx_order
Definition: test_broken_space.cpp:50
AINSWORTH_LEGENDRE_BASE
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition: definitions.h:60
MoFEM::PetscOptionsGetEList
PetscErrorCode PetscOptionsGetEList(PetscOptions *, const char pre[], const char name[], const char *const *list, PetscInt next, PetscInt *value, PetscBool *set)
Definition: DeprecatedPetsc.hpp:203
MoFEM::OpInvertMatrix
Definition: UserDataOperators.hpp:3249
MoFEM::CoreInterface::build_fields
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
sdf_hertz_2d_axisymm_plane.d
float d
Definition: sdf_hertz_2d_axisymm_plane.py:4
MoFEM::CoreInterface::modify_finite_element_add_field_data
virtual MoFEMErrorCode modify_finite_element_add_field_data(const std::string &fe_name, const std::string name_filed)=0
set finite element field data
QuadOpLhs::QuadOpLhs
QuadOpLhs(SmartPetscObj< Mat > &a)
Definition: quad_polynomial_approximation.cpp:364
FieldApproximationBase
FieldApproximationBase
approximation base
Definition: definitions.h:58
MoFEM::Types::VectorDouble
UBlasVector< double > VectorDouble
Definition: Types.hpp:68
ReactionDiffusionEquation::D
const double D
diffusivity
Definition: reaction_diffusion.cpp:20
m
FTensor::Index< 'm', 3 > m
Definition: shallow_wave.cpp:80
MoFEM::BitRefManager
Managing BitRefLevels.
Definition: BitRefManager.hpp:21
MoFEM::CoreInterface::modify_problem_add_finite_element
virtual MoFEMErrorCode modify_problem_add_finite_element(const std::string name_problem, const std::string &fe_name)=0
add finite element to problem, this add entities assigned to finite element to a particular problem
main
int main(int argc, char *argv[])
Definition: quad_polynomial_approximation.cpp:83
MoFEM::Types::BitRefLevel
std::bitset< BITREFLEVEL_SIZE > BitRefLevel
Bit structure attached to each entity identifying to what mesh entity is attached.
Definition: Types.hpp:40
MOFEM_ATOM_TEST_INVALID
@ MOFEM_ATOM_TEST_INVALID
Definition: definitions.h:40
MoFEM::CoreInterface::build_adjacencies
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
MoFEM::CoreInterface::set_field_order
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
MoFEM::SmartPetscObj< Vec >
MoFEM::ProblemsManager::partitionGhostDofs
MoFEMErrorCode partitionGhostDofs(const std::string name, int verb=VERBOSE)
determine ghost nodes
Definition: ProblemsManager.cpp:2339
fun
auto fun
Function to approximate.
Definition: dg_projection.cpp:36
MoFEM::CoreInterface::add_problem
virtual MoFEMErrorCode add_problem(const std::string &name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add problem.
help
static char help[]
Definition: quad_polynomial_approximation.cpp:17
convert.int
int
Definition: convert.py:64
MoFEMFunctionReturn
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:429
MoFEMFunctionBegin
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:359
MoFEM::ForcesAndSourcesCore::UserDataOperator::getFTensor1CoordsAtGaussPts
auto getFTensor1CoordsAtGaussPts()
Get coordinates at integration points assuming linear geometry.
Definition: ForcesAndSourcesCore.hpp:1269
QuadOpLhs::A
SmartPetscObj< Mat > A
Definition: quad_polynomial_approximation.cpp:80
F
@ F
Definition: free_surface.cpp:394