v0.13.2
Loading...
Searching...
No Matches
forces_and_sources_testing_users_base.cpp
Go to the documentation of this file.
1/** \file forces_and_sources_testing_users_base.cpp
2 * \example forces_and_sources_testing_users_base.cpp
3 *
4 * Primarily this is used for testing if the code can handle user base. It is
5 * also, an example of how to build and use user approximation base. This is a
6 * test, so we used RT base by Demkowicz recipe.
7 *
8 * Note that triple defines approximation element; element entity type,
9 * approximation space and approximation base. Entity type determines the
10 * integration method; approximation space determines the adjacency of the
11 * matrix and approximation base determines together with space the regularity
12 * of approximation.
13 *
14 */
15
16
17
18#include <MoFEM.hpp>
19#include <Hdiv.hpp>
20
21namespace bio = boost::iostreams;
22using bio::stream;
23using bio::tee_device;
24
25using namespace MoFEM;
26
27static char help[] = "...\n\n";
28
29/**
30 * @brief Class used to calculate base functions at integration points
31 *
32 */
34
37
38 /**
39 * @brief Return interface to this class when one ask for for tetrahedron,
40 * otherisw return interface class for generic class.
41 *
42 * @param iface interface class
43 * @return MoFEMErrorCode
44 */
45 MoFEMErrorCode query_interface(boost::typeindex::type_index type_index,
46 UnknownInterface **iface) const {
48 *iface = const_cast<SomeUserPolynomialBase *>(this);
50 }
51
52 /**
53 * @brief Calculate base functions at intergeneration points
54 *
55 * @param pts
56 * @param ctx_ptr
57 * @return MoFEMErrorCode
58 */
60 boost::shared_ptr<BaseFunctionCtx> ctx_ptr) {
62
64
65 int nb_gauss_pts = pts.size2();
66 if (!nb_gauss_pts) {
68 }
69
70 if (pts.size1() < 3) {
71 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
72 "Wrong dimension of pts, should be at least 3 rows with "
73 "coordinates");
74 }
75
76 switch (cTx->sPace) {
77 case HDIV:
79 break;
80 default:
81 SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED, "Not yet implemented");
82 }
83
85 }
86
87private:
89
91
94
95 const FieldApproximationBase base = cTx->bAse;
96 // This should be used only in case USER_BASE is selected
97 if (cTx->bAse != USER_BASE) {
98 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
99 "Wrong base, should be USER_BASE");
100 }
101
102 // This is example, simply use Demkowicz HDiv base to generate base
103 // functions
104
105 EntitiesFieldData &data = cTx->dAta;
106 int nb_gauss_pts = pts.size2();
107
108 // calculate shape functions, i.e. barycentric coordinates
109 shapeFun.resize(nb_gauss_pts, 4, false);
110 CHKERR ShapeMBTET(&*shapeFun.data().begin(), &pts(0, 0), &pts(1, 0),
111 &pts(2, 0), nb_gauss_pts);
112 // derivatives of shape functions
113 double diff_shape_fun[12];
114 CHKERR ShapeDiffMBTET(diff_shape_fun);
115
116 int volume_order = data.dataOnEntities[MBTET][0].getOrder();
117
118 int p_f[4];
119 double *phi_f[4];
120 double *diff_phi_f[4];
121
122 // Calculate base function on tet faces
123 for (int ff = 0; ff != 4; ff++) {
124 int face_order = data.dataOnEntities[MBTRI][ff].getOrder();
125 int order = volume_order > face_order ? volume_order : face_order;
126 data.dataOnEntities[MBTRI][ff].getN(base).resize(
127 nb_gauss_pts, 3 * NBFACETRI_DEMKOWICZ_HDIV(order), false);
128 data.dataOnEntities[MBTRI][ff].getDiffN(base).resize(
129 nb_gauss_pts, 9 * NBFACETRI_DEMKOWICZ_HDIV(order), false);
130 p_f[ff] = order;
131 phi_f[ff] = &*data.dataOnEntities[MBTRI][ff].getN(base).data().begin();
132 diff_phi_f[ff] =
133 &*data.dataOnEntities[MBTRI][ff].getDiffN(base).data().begin();
135 continue;
137 &data.facesNodes(ff, 0), order, &*shapeFun.data().begin(),
138 diff_shape_fun, phi_f[ff], diff_phi_f[ff], nb_gauss_pts, 4);
139 }
140
141 // Calculate base functions in tet interior
142 if (NBVOLUMETET_DEMKOWICZ_HDIV(volume_order) > 0) {
143 data.dataOnEntities[MBTET][0].getN(base).resize(
144 nb_gauss_pts, 3 * NBVOLUMETET_DEMKOWICZ_HDIV(volume_order), false);
145 data.dataOnEntities[MBTET][0].getDiffN(base).resize(
146 nb_gauss_pts, 9 * NBVOLUMETET_DEMKOWICZ_HDIV(volume_order), false);
147 double *phi_v = &*data.dataOnEntities[MBTET][0].getN(base).data().begin();
148 double *diff_phi_v =
149 &*data.dataOnEntities[MBTET][0].getDiffN(base).data().begin();
151 volume_order, &*shapeFun.data().begin(), diff_shape_fun, p_f, phi_f,
152 diff_phi_f, phi_v, diff_phi_v, nb_gauss_pts);
153 }
154
155 // Set size of face base correctly
156 for (int ff = 0; ff != 4; ff++) {
157 int face_order = data.dataOnEntities[MBTRI][ff].getOrder();
158 data.dataOnEntities[MBTRI][ff].getN(base).resize(
159 nb_gauss_pts, 3 * NBFACETRI_DEMKOWICZ_HDIV(face_order), true);
160 data.dataOnEntities[MBTRI][ff].getDiffN(base).resize(
161 nb_gauss_pts, 9 * NBFACETRI_DEMKOWICZ_HDIV(face_order), true);
162 }
163
165 }
166};
167
168int main(int argc, char *argv[]) {
169
170 // Initialise MoFEM, MPI and petsc
171 MoFEM::Core::Initialize(&argc, &argv, (char *)0, help);
172
173 try {
174
175 // create moab
176 moab::Core mb_instance;
177 // get interface to moab databse
178 moab::Interface &moab = mb_instance;
179
180 // get file
181 PetscBool flg = PETSC_TRUE;
182 char mesh_file_name[255];
183#if PETSC_VERSION_GE(3, 6, 4)
184 CHKERR PetscOptionsGetString(PETSC_NULL, "", "-my_file", mesh_file_name,
185 255, &flg);
186#else
187 CHKERR PetscOptionsGetString(PETSC_NULL, PETSC_NULL, "-my_file",
188 mesh_file_name, 255, &flg);
189#endif
190 if (flg != PETSC_TRUE) {
191 SETERRQ(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
192 "*** ERROR -my_file (MESH FILE NEEDED)");
193 }
194
195 // create MoFEM database
196 MoFEM::Core core(moab);
197 // get interface to moab database
198 MoFEM::Interface &m_field = core;
199
200 // load mesh file
201 const char *option;
202 option = "";
203 CHKERR moab.load_file(mesh_file_name, 0, option);
204
205 // set bit refinement level
206 CHKERR m_field.getInterface<BitRefManager>()->setBitRefLevelByDim(
207 0, 3, BitRefLevel().set(0));
208
209 // Create fields, field "FIELD_CGG" has user base, it means that recipe how
210 // to construct approximation is provided by user. Is set that user provided
211 // base is in h-div space.
212 CHKERR m_field.add_field("FILED_CGG", HDIV, USER_BASE, 1);
213 CHKERR m_field.add_field("FILED_RT", HDIV, DEMKOWICZ_JACOBI_BASE, 1);
214
215 // get access to "FIELD_CGG" data structure
216 auto field_ptr = m_field.get_field_structure("FILED_CGG");
217 // get table associating number of dofs to entities depending on
218 // approximation order set on those entities.
219 auto field_order_table =
220 const_cast<Field *>(field_ptr)->getFieldOrderTable();
221
222 // function set zero number of dofs
223 auto get_cgg_bubble_order_zero = [](int p) { return 0; };
224 // function set non-zero number of dofs on tetrahedrons
225 auto get_cgg_bubble_order_face = [](int p) {
227 };
228 auto get_cgg_bubble_order_tet = [](int p) {
230 };
231 field_order_table[MBVERTEX] = get_cgg_bubble_order_zero;
232 field_order_table[MBEDGE] = get_cgg_bubble_order_zero;
233 field_order_table[MBTRI] = get_cgg_bubble_order_face;
234 field_order_table[MBTET] = get_cgg_bubble_order_tet;
235 const_cast<Field *>(field_ptr)->rebuildDofsOrderMap();
236
237 auto &dof_order_map = field_ptr->getDofOrderMap(MBTET);
238 for(auto d = 0; d!=10; ++d) {
239 MOFEM_LOG("WORLD", Sev::noisy) << "dof " << dof_order_map[d];
240 }
241
242 CHKERR m_field.add_finite_element("FE");
243
244 // define rows/cols and element data
245 CHKERR m_field.modify_finite_element_add_field_row("FE", "FILED_CGG");
246 CHKERR m_field.modify_finite_element_add_field_col("FE", "FILED_CGG");
247 CHKERR m_field.modify_finite_element_add_field_data("FE", "FILED_CGG");
248 CHKERR m_field.modify_finite_element_add_field_row("FE", "FILED_RT");
249 CHKERR m_field.modify_finite_element_add_field_col("FE", "FILED_RT");
250 CHKERR m_field.modify_finite_element_add_field_data("FE", "FILED_RT");
251
252 // add problem
253 CHKERR m_field.add_problem("PROBLEM");
254
255 // set finite elements for problem
256 CHKERR m_field.modify_problem_add_finite_element("PROBLEM", "FE");
257 // set refinement level for problem
259 BitRefLevel().set(0));
260
261 // meshset consisting all entities in mesh
262 EntityHandle root_set = moab.get_root_set();
263 // add entities to field
264 CHKERR m_field.add_ents_to_field_by_type(root_set, MBTET, "FILED_CGG");
265 CHKERR m_field.add_ents_to_field_by_type(root_set, MBTET, "FILED_RT");
266 // add entities to finite element
267 CHKERR m_field.add_ents_to_finite_element_by_type(root_set, MBTET, "FE");
268
269 // set app. order
270 int order = 3;
271 CHKERR m_field.set_field_order(root_set, MBTRI, "FILED_CGG", order);
272 CHKERR m_field.set_field_order(root_set, MBTET, "FILED_CGG", order);
273 CHKERR m_field.set_field_order(root_set, MBTRI, "FILED_RT", order);
274 CHKERR m_field.set_field_order(root_set, MBTET, "FILED_RT", order);
275
276 /****/
277 // build database
278 // build field
279 CHKERR m_field.build_fields();
280 // build finite elemnts
282 // build adjacencies
283 CHKERR m_field.build_adjacencies(BitRefLevel().set(0));
284
285 // build problem
286 CHKERR m_field.getInterface<ProblemsManager>()->buildProblem("PROBLEM",
287 true);
288 // dofs partitioning
289 CHKERR m_field.getInterface<ProblemsManager>()->partitionSimpleProblem(
290 "PROBLEM");
291 CHKERR m_field.getInterface<ProblemsManager>()->partitionFiniteElements(
292 "PROBLEM");
293 // what are ghost nodes, see Petsc Manual
294 CHKERR m_field.getInterface<ProblemsManager>()->partitionGhostDofs(
295 "PROBLEM");
296
297 typedef tee_device<std::ostream, std::ofstream> TeeDevice;
298 typedef stream<TeeDevice> TeeStream;
299
300 std::ofstream ofs("forces_and_sources_testing_users_base.txt");
301 TeeDevice my_tee(std::cout, ofs);
302 TeeStream my_split(my_tee);
303
304 /**
305 * Simple user data operator which main purpose is to print values
306 * of base functions at intergation points.
307 *
308 */
310
311 TeeStream &my_split;
312 MyOp1(const std::string &row_filed, const std::string &col_field,
313 TeeStream &_my_split, char type)
315 row_filed, col_field, type),
316 my_split(_my_split) {
317 sYmm = false;
318 }
319
320 MoFEMErrorCode doWork(int side, EntityType type,
323 if (data.getIndices().empty()) {
325 }
326 my_split << rowFieldName << endl;
327 my_split << "side: " << side << " type: " << type << std::endl;
328 my_split << data << endl;
329 my_split << data.getN() << endl;
330 my_split << endl;
332 }
333
334 MoFEMErrorCode doWork(int row_side, int col_side, EntityType row_type,
335 EntityType col_type,
337 EntitiesFieldData::EntData &col_data) {
339 if (row_data.getIndices().empty())
341 if (col_data.getIndices().empty())
343 my_split << rowFieldName << " : " << colFieldName << endl;
344 my_split << "row side: " << row_side << " row_type: " << row_type
345 << std::endl;
346 my_split << "col side: " << col_side << " col_type: " << col_type
347 << std::endl;
348 my_split << row_data.getIndices().size() << " : "
349 << col_data.getIndices().size() << endl;
350 my_split << endl;
352 }
353 };
354
355 // create finite element instance
357 // set class needed to construct user approximation base
359 boost::shared_ptr<BaseFunction>(new SomeUserPolynomialBase());
360
361 // push user data oprators
362 fe1.getOpPtrVector().push_back(
363 new MyOp1("FILED_CGG", "FILED_CGG", my_split,
364 ForcesAndSourcesCore::UserDataOperator::OPROW));
365 fe1.getOpPtrVector().push_back(
366 new MyOp1("FILED_CGG", "FILED_RT", my_split,
367 ForcesAndSourcesCore::UserDataOperator::OPROWCOL));
368
369 // iterate over finite elements, and execute user data operators on each
370 // of them
371 CHKERR m_field.loop_finite_elements("PROBLEM", "FE", fe1);
372 }
374
376
377 return 0;
378}
static Index< 'p', 3 > p
Implementation of H-curl base function.
int main()
Definition: adol-c_atom.cpp:46
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:372
FieldApproximationBase
approximation base
Definition: definitions.h:58
@ USER_BASE
user implemented approximation base
Definition: definitions.h:68
@ DEMKOWICZ_JACOBI_BASE
Definition: definitions.h:66
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:447
@ HDIV
field with continuous normal traction
Definition: definitions.h:87
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:346
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:31
@ MOFEM_NOT_IMPLEMENTED
Definition: definitions.h:32
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:416
#define CHKERR
Inline error check.
Definition: definitions.h:535
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:440
PetscErrorCode ShapeDiffMBTET(double *diffN)
calculate derivatives of shape functions
Definition: fem_tools.c:319
PetscErrorCode ShapeMBTET(double *N, const double *G_X, const double *G_Y, const double *G_Z, int DIM)
calculate shape functions
Definition: fem_tools.c:306
tee_device< std::ostream, std::ofstream > TeeDevice
virtual MoFEMErrorCode add_finite_element(const std::string &fe_name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
add finite element
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
virtual MoFEMErrorCode modify_finite_element_add_field_col(const std::string &fe_name, const std::string name_row)=0
set field col which finite element use
virtual MoFEMErrorCode add_ents_to_finite_element_by_type(const EntityHandle entities, const EntityType type, const std::string &name, const bool recursive=true)=0
add entities to finite element
virtual MoFEMErrorCode modify_finite_element_add_field_data(const std::string &fe_name, const std::string name_filed)=0
set finite element field data
virtual MoFEMErrorCode modify_finite_element_add_field_row(const std::string &fe_name, const std::string name_row)=0
set field row which finite element use
virtual const Field * get_field_structure(const std::string &name, enum MoFEMTypes bh=MF_EXIST) const =0
get field structure
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
virtual MoFEMErrorCode add_ents_to_field_by_type(const Range &ents, const EntityType type, const std::string &name, int verb=DEFAULT_VERBOSITY)=0
Add entities to field meshset.
#define MOFEM_LOG(channel, severity)
Log.
Definition: LogManager.hpp:308
virtual MoFEMErrorCode loop_finite_elements(const std::string problem_name, const std::string &fe_name, FEMethod &method, boost::shared_ptr< NumeredEntFiniteElement_multiIndex > fe_ptr=nullptr, MoFEMTypes bh=MF_EXIST, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr(), int verb=DEFAULT_VERBOSITY)=0
Make a loop over finite elements.
virtual MoFEMErrorCode add_problem(const std::string &name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add problem.
virtual MoFEMErrorCode modify_problem_ref_level_add_bit(const std::string &name_problem, const BitRefLevel &bit)=0
add ref level to problem
virtual MoFEMErrorCode modify_problem_add_finite_element(const std::string name_problem, const std::string &fe_name)=0
add finite element to problem, this add entities assigned to finite element to a particular problem
#define NBVOLUMETET_DEMKOWICZ_HDIV(P)
#define NBFACETRI_DEMKOWICZ_HDIV(P)
char mesh_file_name[255]
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
Definition: Exceptions.hpp:56
std::bitset< BITREFLEVEL_SIZE > BitRefLevel
Bit structure attached to each entity identifying to what mesh entity is attached.
Definition: Types.hpp:40
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
MoFEMErrorCode Hdiv_Demkowicz_Face_MBTET_ON_FACE(int *faces_nodes, int p, double *N, double *diffN, double *phi_f, double *diff_phi_f, int gdim, int nb)
Definition: Hdiv.cpp:617
MoFEMErrorCode Hdiv_Demkowicz_Interior_MBTET(int p, double *N, double *diffN, int p_face[], double *phi_f[4], double *diff_phi_f[4], double *phi_v, double *diff_phi_v, int gdim)
Definition: Hdiv.cpp:762
PetscErrorCode PetscOptionsGetString(PetscOptions *, const char pre[], const char name[], char str[], size_t size, PetscBool *set)
Base class if inherited used to calculate base functions.
Managing BitRefLevels.
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
virtual MoFEMErrorCode add_field(const std::string &name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add field.
Core (interface) class.
Definition: Core.hpp:82
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:72
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:112
Deprecated interface functions.
Class used to pass element data to calculate base functions on tet,triangle,edge.
const FieldApproximationBase bAse
Data on single entity (This is passed as argument to DataOperator::doWork)
MatrixDouble & getN(const FieldApproximationBase base)
get base functions this return matrix (nb. of rows is equal to nb. of Gauss pts, nb....
const VectorInt & getIndices() const
Get global indices of dofs on entity.
data structure for finite element entity
MatrixInt facesNodes
nodes on finite element faces
std::array< boost::ptr_vector< EntData >, MBMAXTYPE > dataOnEntities
Provide data structure for (tensor) field approximation.
const std::array< ApproximationOrder, MAX_DOFS_ON_ENTITY > & getDofOrderMap(const EntityType type) const
get hash-map relating dof index on entity with its order
auto & getUserPolynomialBase()
Get the User Polynomial Base object.
boost::ptr_deque< UserDataOperator > & getOpPtrVector()
Use to push back operator for row operator.
Problem manager is used to build and partition problems.
base class for all interface classes
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface refernce to pointer of interface.
Class used to calculate base functions at integration points.
MoFEMErrorCode getValueHdivForCGGBubble(MatrixDouble &pts)
MoFEMErrorCode getValue(MatrixDouble &pts, boost::shared_ptr< BaseFunctionCtx > ctx_ptr)
Calculate base functions at intergeneration points.
MoFEMErrorCode query_interface(boost::typeindex::type_index type_index, UnknownInterface **iface) const
Return interface to this class when one ask for for tetrahedron, otherisw return interface class for ...
~SomeUserPolynomialBase()=default
SomeUserPolynomialBase()=default