v0.14.0
simple_contact.cpp

Implementation of simple contact between surfaces with matching meshes

/** \file simple_contact.cpp
* \example simple_contact.cpp
*
* Implementation of simple contact between surfaces with matching meshes
*
**/
/* MoFEM is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* MoFEM is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with MoFEM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <Mortar.hpp>
#include <Hooke.hpp>
using namespace MoFEM;
using namespace std;
static char help[] = "\n";
int main(int argc, char *argv[]) {
const string default_options = "-ksp_type fgmres \n"
"-pc_type lu \n"
"-pc_factor_mat_solver_type mumps \n"
"-mat_mumps_icntl_13 1 \n"
"-mat_mumps_icntl_14 800 \n"
"-mat_mumps_icntl_20 0 \n"
"-mat_mumps_icntl_24 1 \n"
"-snes_type newtonls \n"
"-snes_linesearch_type basic \n"
"-snes_divergence_tolerance 0 \n"
"-snes_max_it 50 \n"
"-snes_atol 1e-8 \n"
"-snes_rtol 1e-10 \n"
"-snes_monitor \n"
"-ksp_monitor \n"
"-snes_converged_reason \n"
"-my_order 1 \n"
"-my_order_lambda 1 \n"
"-my_order_contact 2 \n"
"-my_ho_levels_num 1 \n"
"-my_step_num 1 \n"
"-my_cn_value 1. \n"
"-my_r_value 1. \n"
"-my_alm_flag 0 \n";
string param_file = "param_file.petsc";
if (!static_cast<bool>(ifstream(param_file))) {
std::ofstream file(param_file.c_str(), std::ios::ate);
if (file.is_open()) {
file << default_options;
file.close();
}
}
FOUR_SEASONS = 2,
PLANE_AXI = 6,
ARC_THREE_SURF = 7,
WAVE_2D = 10,
};
// Initialize MoFEM
MoFEM::Core::Initialize(&argc, &argv, param_file.c_str(), help);
// Create mesh database
moab::Core mb_instance; // create database
moab::Interface &moab = mb_instance; // create interface to database
try {
PetscBool flg_file;
char mesh_file_name[255];
PetscInt order = 1;
PetscInt order_contact = 1;
PetscInt nb_ho_levels = 0;
PetscInt order_lambda = 1;
PetscReal r_value = 1.;
PetscReal cn_value = -1;
PetscInt nb_sub_steps = 1;
PetscBool is_partitioned = PETSC_FALSE;
PetscBool is_newton_cotes = PETSC_FALSE;
PetscInt test_num = 0;
PetscBool convect_pts = PETSC_FALSE;
PetscBool print_contact_state = PETSC_FALSE;
PetscBool alm_flag = PETSC_FALSE;
PetscBool wave_surf_flag = PETSC_FALSE;
PetscInt wave_dim = 2;
PetscInt wave_surf_block_id = 1;
PetscReal wave_length = 1.0;
PetscReal wave_ampl = 0.01;
PetscReal mesh_height = 1.0;
CHKERR PetscOptionsBegin(PETSC_COMM_WORLD, "", "Elastic Config", "none");
CHKERR PetscOptionsString("-my_file", "mesh file name", "", "mesh.h5m",
mesh_file_name, 255, &flg_file);
CHKERR PetscOptionsInt("-my_order",
"approximation order of spatial positions", "", 1,
&order, PETSC_NULL);
CHKERR PetscOptionsInt(
"-my_order_contact",
"approximation order of spatial positions in contact interface", "", 1,
&order_contact, PETSC_NULL);
CHKERR PetscOptionsInt("-my_ho_levels_num", "number of higher order levels",
"", 0, &nb_ho_levels, PETSC_NULL);
CHKERR PetscOptionsInt("-my_order_lambda",
"approximation order of Lagrange multipliers", "", 1,
&order_lambda, PETSC_NULL);
CHKERR PetscOptionsInt("-my_step_num", "number of steps", "", nb_sub_steps,
&nb_sub_steps, PETSC_NULL);
CHKERR PetscOptionsBool("-my_is_partitioned",
"set if mesh is partitioned (this result that each "
"process keeps only part of the mes",
"", PETSC_FALSE, &is_partitioned, PETSC_NULL);
CHKERR PetscOptionsReal("-my_cn_value", "default regularisation cn value",
"", 1., &cn_value, PETSC_NULL);
CHKERR PetscOptionsBool("-my_is_newton_cotes",
"set if Newton-Cotes quadrature rules are used", "",
PETSC_FALSE, &is_newton_cotes, PETSC_NULL);
CHKERR PetscOptionsInt("-my_test_num", "test number", "", 0, &test_num,
PETSC_NULL);
CHKERR PetscOptionsBool("-my_convect", "set to convect integration pts", "",
PETSC_FALSE, &convect_pts, PETSC_NULL);
CHKERR PetscOptionsBool("-my_print_contact_state",
"output number of active gp at every iteration", "",
PETSC_FALSE, &print_contact_state, PETSC_NULL);
CHKERR PetscOptionsBool("-my_alm_flag",
"if set use ALM, if not use C-function", "",
PETSC_FALSE, &alm_flag, PETSC_NULL);
CHKERR PetscOptionsBool("-my_wave_surf",
"if set true, make one of the surfaces wavy", "",
PETSC_FALSE, &wave_surf_flag, PETSC_NULL);
CHKERR PetscOptionsInt("-my_wave_surf_block_id",
"make wavy surface of the block with this id", "",
wave_surf_block_id, &wave_surf_block_id, PETSC_NULL);
CHKERR PetscOptionsInt("-my_wave_dim", "dimension (2 or 3)", "", wave_dim,
&wave_dim, PETSC_NULL);
CHKERR PetscOptionsReal("-my_wave_length", "profile wavelength", "",
wave_length, &wave_length, PETSC_NULL);
CHKERR PetscOptionsReal("-my_wave_ampl", "profile amplitude", "", wave_ampl,
&wave_ampl, PETSC_NULL);
CHKERR PetscOptionsReal("-my_mesh_height",
"vertical dimension of the mesh ", "", mesh_height,
&mesh_height, PETSC_NULL);
ierr = PetscOptionsEnd();
CHKERRQ(ierr);
// Check if mesh file was provided
if (flg_file != PETSC_TRUE) {
SETERRQ(PETSC_COMM_SELF, 1, "*** ERROR -my_file (MESH FILE NEEDED)");
}
if (is_partitioned == PETSC_TRUE) {
SETERRQ(PETSC_COMM_SELF, MOFEM_NOT_IMPLEMENTED,
"Partitioned mesh is not supported");
}
const char *option;
option = "";
CHKERR moab.load_file(mesh_file_name, 0, option);
// Create MoFEM database and link it to MoAB
MoFEM::Core core(moab);
MoFEM::Interface &m_field = core;
MeshsetsManager *mmanager_ptr;
CHKERR m_field.getInterface(mmanager_ptr);
CHKERR mmanager_ptr->printDisplacementSet();
CHKERR mmanager_ptr->printForceSet();
// print block sets with materials
CHKERR mmanager_ptr->printMaterialsSet();
auto add_prism_interface = [&](Range &contact_prisms, Range &master_tris,
Range &slave_tris,
std::vector<BitRefLevel> &bit_levels) {
PrismInterface *interface;
CHKERR m_field.getInterface(interface);
if (cit->getName().compare(0, 11, "INT_CONTACT") == 0) {
CHKERR PetscPrintf(PETSC_COMM_WORLD, "Insert %s (id: %d)\n",
cit->getName().c_str(), cit->getMeshsetId());
EntityHandle cubit_meshset = cit->getMeshset();
// get tet entities from back bit_level
EntityHandle ref_level_meshset;
CHKERR moab.create_meshset(MESHSET_SET, ref_level_meshset);
->getEntitiesByTypeAndRefLevel(bit_levels.back(),
BitRefLevel().set(), MBTET,
ref_level_meshset);
->getEntitiesByTypeAndRefLevel(bit_levels.back(),
BitRefLevel().set(), MBPRISM,
ref_level_meshset);
// get faces and tets to split
CHKERR interface->getSides(cubit_meshset, bit_levels.back(), true, 0);
// set new bit level
bit_levels.push_back(BitRefLevel().set(bit_levels.size()));
// split faces and tets
CHKERR interface->splitSides(ref_level_meshset, bit_levels.back(),
cubit_meshset, true, true, 0);
// clean meshsets
CHKERR moab.delete_entities(&ref_level_meshset, 1);
// update cubit meshsets
for (_IT_CUBITMESHSETS_FOR_LOOP_(m_field, ciit)) {
EntityHandle cubit_meshset = ciit->meshset;
->updateMeshsetByEntitiesChildren(
cubit_meshset, bit_levels.back(), cubit_meshset, MBVERTEX,
true);
->updateMeshsetByEntitiesChildren(cubit_meshset,
bit_levels.back(),
cubit_meshset, MBEDGE, true);
->updateMeshsetByEntitiesChildren(cubit_meshset,
bit_levels.back(),
cubit_meshset, MBTRI, true);
->updateMeshsetByEntitiesChildren(cubit_meshset,
bit_levels.back(),
cubit_meshset, MBTET, true);
}
CHKERR m_field.getInterface<BitRefManager>()->shiftRightBitRef(1);
bit_levels.pop_back();
}
}
EntityHandle meshset_prisms;
CHKERR moab.create_meshset(MESHSET_SET, meshset_prisms);
->getEntitiesByTypeAndRefLevel(bit_levels.back(), BitRefLevel().set(),
MBPRISM, meshset_prisms);
CHKERR moab.get_entities_by_handle(meshset_prisms, contact_prisms);
CHKERR moab.delete_entities(&meshset_prisms, 1);
for (Range::iterator pit = contact_prisms.begin();
pit != contact_prisms.end(); pit++) {
CHKERR moab.side_element(*pit, 2, 3, tri);
master_tris.insert(tri);
CHKERR moab.side_element(*pit, 2, 4, tri);
slave_tris.insert(tri);
}
};
auto make_wavy_surface = [&](int block_id, int dim, double lambda,
double delta, double height) {
Range all_tets, all_nodes;
if (bit->getName().compare(0, 11, "MAT_ELASTIC") == 0) {
const int id = bit->getMeshsetId();
Range tets;
if (id == block_id) {
CHKERR m_field.get_moab().get_entities_by_dimension(
bit->getMeshset(), 3, tets, true);
all_tets.merge(tets);
}
}
}
CHKERR m_field.get_moab().get_connectivity(all_tets, all_nodes);
double coords[3];
for (Range::iterator nit = all_nodes.begin(); nit != all_nodes.end();
nit++) {
CHKERR moab.get_coords(&*nit, 1, coords);
double x = coords[0];
double y = coords[1];
double z = coords[2];
double coef = (height + z) / height;
switch (dim) {
case 2:
coords[2] -= coef * delta * (1. - cos(2. * M_PI * x / lambda));
break;
case 3:
coords[2] -=
coef * delta *
(1. - cos(2. * M_PI * x / lambda) * cos(2. * M_PI * y / lambda));
break;
default:
SETERRQ1(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
"Wrong dimension = %d", dim);
}
CHKERR moab.set_coords(&*nit, 1, coords);
}
};
auto set_contact_order = [&](Range &contact_prisms, int order_contact,
int nb_ho_levels) {
Range contact_tris, contact_edges;
CHKERR moab.get_adjacencies(contact_prisms, 2, false, contact_tris,
moab::Interface::UNION);
contact_tris = contact_tris.subset_by_type(MBTRI);
CHKERR moab.get_adjacencies(contact_tris, 1, false, contact_edges,
moab::Interface::UNION);
Range ho_ents;
ho_ents.merge(contact_tris);
ho_ents.merge(contact_edges);
for (int ll = 0; ll < nb_ho_levels; ll++) {
Range ents, verts, tets;
CHKERR moab.get_connectivity(ho_ents, verts, true);
CHKERR moab.get_adjacencies(verts, 3, false, tets,
moab::Interface::UNION);
tets = tets.subset_by_type(MBTET);
for (auto d : {1, 2}) {
CHKERR moab.get_adjacencies(tets, d, false, ents,
moab::Interface::UNION);
}
ho_ents = unite(ho_ents, ents);
ho_ents = unite(ho_ents, tets);
}
CHKERR m_field.set_field_order(ho_ents, "SPATIAL_POSITION",
order_contact);
};
Range contact_prisms, master_tris, slave_tris;
std::vector<BitRefLevel> bit_levels;
bit_levels.push_back(BitRefLevel().set(0));
CHKERR m_field.getInterface<BitRefManager>()->setBitRefLevelByDim(
0, 3, bit_levels.back());
CHKERR add_prism_interface(contact_prisms, master_tris, slave_tris,
bit_levels);
if (wave_surf_flag) {
CHKERR make_wavy_surface(wave_surf_block_id, wave_dim, wave_length,
wave_ampl, mesh_height);
}
CHKERR m_field.add_field("SPATIAL_POSITION", H1, AINSWORTH_LEGENDRE_BASE, 3,
MB_TAG_SPARSE, MF_ZERO);
CHKERR m_field.add_field("MESH_NODE_POSITIONS", H1, AINSWORTH_LEGENDRE_BASE,
3, MB_TAG_SPARSE, MF_ZERO);
CHKERR m_field.add_field("LAGMULT", H1, AINSWORTH_LEGENDRE_BASE, 1,
MB_TAG_SPARSE, MF_ZERO);
CHKERR m_field.add_ents_to_field_by_type(0, MBTET, "MESH_NODE_POSITIONS");
CHKERR m_field.set_field_order(0, MBTET, "MESH_NODE_POSITIONS", 1);
CHKERR m_field.set_field_order(0, MBTRI, "MESH_NODE_POSITIONS", 1);
CHKERR m_field.set_field_order(0, MBEDGE, "MESH_NODE_POSITIONS", 1);
CHKERR m_field.set_field_order(0, MBVERTEX, "MESH_NODE_POSITIONS", 1);
// Declare problem add entities (by tets) to the field
CHKERR m_field.add_ents_to_field_by_type(0, MBTET, "SPATIAL_POSITION");
CHKERR m_field.set_field_order(0, MBTET, "SPATIAL_POSITION", order);
CHKERR m_field.set_field_order(0, MBTRI, "SPATIAL_POSITION", order);
CHKERR m_field.set_field_order(0, MBEDGE, "SPATIAL_POSITION", order);
CHKERR m_field.set_field_order(0, MBVERTEX, "SPATIAL_POSITION", 1);
CHKERR m_field.add_ents_to_field_by_type(slave_tris, MBTRI, "LAGMULT");
CHKERR m_field.set_field_order(0, MBTRI, "LAGMULT", order_lambda);
CHKERR m_field.set_field_order(0, MBEDGE, "LAGMULT", order_lambda);
CHKERR m_field.set_field_order(0, MBVERTEX, "LAGMULT", 1);
if (order_contact > order) {
CHKERR set_contact_order(contact_prisms, order_contact, nb_ho_levels);
}
// build field
CHKERR m_field.build_fields();
// Projection on "x" field
{
Projection10NodeCoordsOnField ent_method(m_field, "SPATIAL_POSITION");
CHKERR m_field.loop_dofs("SPATIAL_POSITION", ent_method);
}
// Projection on "X" field
{
Projection10NodeCoordsOnField ent_method(m_field, "MESH_NODE_POSITIONS");
CHKERR m_field.loop_dofs("MESH_NODE_POSITIONS", ent_method);
}
// Add elastic element
boost::shared_ptr<Hooke<adouble>> hooke_adouble_ptr(new Hooke<adouble>());
boost::shared_ptr<Hooke<double>> hooke_double_ptr(new Hooke<double>());
NonlinearElasticElement elastic(m_field, 2);
CHKERR elastic.setBlocks(hooke_double_ptr, hooke_adouble_ptr);
CHKERR elastic.addElement("ELASTIC", "SPATIAL_POSITION");
CHKERR elastic.setOperators("SPATIAL_POSITION", "MESH_NODE_POSITIONS",
false, false);
auto make_contact_element = [&]() {
return boost::make_shared<SimpleContactProblem::SimpleContactElement>(
m_field);
};
auto make_convective_master_element = [&]() {
return boost::make_shared<
m_field, "SPATIAL_POSITION", "MESH_NODE_POSITIONS");
};
auto make_convective_slave_element = [&]() {
return boost::make_shared<
m_field, "SPATIAL_POSITION", "MESH_NODE_POSITIONS");
};
auto make_contact_common_data = [&]() {
return boost::make_shared<SimpleContactProblem::CommonDataSimpleContact>(
m_field);
};
auto get_contact_rhs = [&](auto contact_problem, auto make_element,
bool is_alm = false) {
auto fe_rhs_simple_contact = make_element();
auto common_data_simple_contact = make_contact_common_data();
if (print_contact_state) {
fe_rhs_simple_contact->contactStateVec =
common_data_simple_contact->gaussPtsStateVec;
}
contact_problem->setContactOperatorsRhs(
fe_rhs_simple_contact, common_data_simple_contact, "SPATIAL_POSITION",
"LAGMULT", is_alm);
return fe_rhs_simple_contact;
};
auto get_master_traction_rhs = [&](auto contact_problem, auto make_element,
bool is_alm = false) {
auto fe_rhs_simple_contact = make_element();
auto common_data_simple_contact = make_contact_common_data();
contact_problem->setMasterForceOperatorsRhs(
fe_rhs_simple_contact, common_data_simple_contact, "SPATIAL_POSITION",
"LAGMULT", is_alm);
return fe_rhs_simple_contact;
};
auto get_master_traction_lhs = [&](auto contact_problem, auto make_element,
bool is_alm = false) {
auto fe_lhs_simple_contact = make_element();
auto common_data_simple_contact = make_contact_common_data();
contact_problem->setMasterForceOperatorsLhs(
fe_lhs_simple_contact, common_data_simple_contact, "SPATIAL_POSITION",
"LAGMULT", is_alm);
return fe_lhs_simple_contact;
};
auto get_contact_lhs = [&](auto contact_problem, auto make_element,
bool is_alm = false) {
auto fe_lhs_simple_contact = make_element();
auto common_data_simple_contact = make_contact_common_data();
contact_problem->setContactOperatorsLhs(
fe_lhs_simple_contact, common_data_simple_contact, "SPATIAL_POSITION",
"LAGMULT", is_alm);
return fe_lhs_simple_contact;
};
auto cn_value_ptr = boost::make_shared<double>(cn_value);
auto contact_problem = boost::make_shared<SimpleContactProblem>(
m_field, cn_value_ptr, is_newton_cotes);
// add fields to the global matrix by adding the element
contact_problem->addContactElement("CONTACT_ELEM", "SPATIAL_POSITION",
"LAGMULT", contact_prisms);
contact_problem->addPostProcContactElement(
"CONTACT_POST_PROC", "SPATIAL_POSITION", "LAGMULT",
"MESH_NODE_POSITIONS", slave_tris);
CHKERR MetaNeumannForces::addNeumannBCElements(m_field, "SPATIAL_POSITION");
// Add spring boundary condition applied on surfaces.
CHKERR MetaSpringBC::addSpringElements(m_field, "SPATIAL_POSITION",
"MESH_NODE_POSITIONS");
// build finite elemnts
// build adjacencies
CHKERR m_field.build_adjacencies(bit_levels.back());
// define problems
CHKERR m_field.add_problem("CONTACT_PROB");
// set refinement level for problem
CHKERR m_field.modify_problem_ref_level_add_bit("CONTACT_PROB",
bit_levels.back());
DMType dm_name = "DMMOFEM";
dm = createSmartDM(m_field.get_comm(), dm_name);
// create dm instance
CHKERR DMSetType(dm, dm_name);
// set dm datastruture which created mofem datastructures
CHKERR DMMoFEMCreateMoFEM(dm, &m_field, "CONTACT_PROB", bit_levels.back());
CHKERR DMSetFromOptions(dm);
CHKERR DMMoFEMSetIsPartitioned(dm, is_partitioned);
// add elements to dm
CHKERR DMMoFEMAddElement(dm, "CONTACT_ELEM");
CHKERR DMMoFEMAddElement(dm, "ELASTIC");
CHKERR DMMoFEMAddElement(dm, "PRESSURE_FE");
CHKERR DMMoFEMAddElement(dm, "SPRING");
CHKERR DMMoFEMAddElement(dm, "CONTACT_POST_PROC");
CHKERR DMSetUp(dm);
// Vector of DOFs and the RHS
auto D = smartCreateDMVector(dm);
// Stiffness matrix
auto Aij = smartCreateDMMatrix(dm);
CHKERR VecZeroEntries(D);
CHKERR DMoFEMMeshToLocalVector(dm, D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecZeroEntries(F);
CHKERR VecGhostUpdateBegin(F, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(F, INSERT_VALUES, SCATTER_FORWARD);
CHKERR MatSetOption(Aij, MAT_SPD, PETSC_TRUE);
CHKERR MatZeroEntries(Aij);
// Dirichlet BC
boost::shared_ptr<FEMethod> dirichlet_bc_ptr =
boost::shared_ptr<FEMethod>(new DirichletSpatialPositionsBc(
m_field, "SPATIAL_POSITION", Aij, D, F));
dirichlet_bc_ptr->snes_ctx = SnesMethod::CTX_SNESNONE;
dirichlet_bc_ptr->snes_x = D;
// Assemble pressure and traction forces
boost::ptr_map<std::string, NeumannForcesSurface> neumann_forces;
m_field, neumann_forces, NULL, "SPATIAL_POSITION");
boost::ptr_map<std::string, NeumannForcesSurface>::iterator mit =
neumann_forces.begin();
for (; mit != neumann_forces.end(); mit++) {
mit->second->methodsOp.push_back(new SimpleContactProblem::LoadScale());
CHKERR DMMoFEMSNESSetFunction(dm, mit->first.c_str(),
&mit->second->getLoopFe(), NULL, NULL);
}
// Implementation of spring element
// Create new instances of face elements for springs
boost::shared_ptr<FaceElementForcesAndSourcesCore> fe_spring_lhs_ptr(
boost::shared_ptr<FaceElementForcesAndSourcesCore> fe_spring_rhs_ptr(
m_field, fe_spring_lhs_ptr, fe_spring_rhs_ptr, "SPATIAL_POSITION",
"MESH_NODE_POSITIONS");
CHKERR DMoFEMPreProcessFiniteElements(dm, dirichlet_bc_ptr.get());
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR DMoFEMMeshToLocalVector(dm, D, INSERT_VALUES, SCATTER_REVERSE);
dirichlet_bc_ptr.get(), NULL);
if (convect_pts == PETSC_TRUE) {
dm, "CONTACT_ELEM",
get_contact_rhs(contact_problem, make_convective_master_element),
PETSC_NULL, PETSC_NULL);
dm, "CONTACT_ELEM",
get_master_traction_rhs(contact_problem,
make_convective_slave_element),
PETSC_NULL, PETSC_NULL);
} else {
dm, "CONTACT_ELEM",
get_contact_rhs(contact_problem, make_contact_element, alm_flag),
PETSC_NULL, PETSC_NULL);
dm, "CONTACT_ELEM",
get_master_traction_rhs(contact_problem, make_contact_element,
alm_flag),
PETSC_NULL, PETSC_NULL);
}
CHKERR DMMoFEMSNESSetFunction(dm, "ELASTIC", &elastic.getLoopFeRhs(),
PETSC_NULL, PETSC_NULL);
CHKERR DMMoFEMSNESSetFunction(dm, "SPRING", fe_spring_rhs_ptr, PETSC_NULL,
PETSC_NULL);
CHKERR DMMoFEMSNESSetFunction(dm, DM_NO_ELEMENT, PETSC_NULL, PETSC_NULL,
dirichlet_bc_ptr.get());
boost::shared_ptr<FEMethod> fe_null;
CHKERR DMMoFEMSNESSetJacobian(dm, DM_NO_ELEMENT, fe_null, dirichlet_bc_ptr,
fe_null);
if (convect_pts == PETSC_TRUE) {
dm, "CONTACT_ELEM",
get_contact_lhs(contact_problem, make_convective_master_element),
PETSC_NULL, PETSC_NULL);
dm, "CONTACT_ELEM",
get_master_traction_lhs(contact_problem,
make_convective_slave_element),
PETSC_NULL, PETSC_NULL);
} else {
dm, "CONTACT_ELEM",
get_contact_lhs(contact_problem, make_contact_element, alm_flag),
PETSC_NULL, PETSC_NULL);
dm, "CONTACT_ELEM",
get_master_traction_lhs(contact_problem, make_contact_element,
alm_flag),
PETSC_NULL, PETSC_NULL);
}
CHKERR DMMoFEMSNESSetJacobian(dm, "ELASTIC", &elastic.getLoopFeLhs(),
PETSC_NULL, PETSC_NULL);
CHKERR DMMoFEMSNESSetJacobian(dm, "SPRING", fe_spring_lhs_ptr, PETSC_NULL,
PETSC_NULL);
dirichlet_bc_ptr);
if (test_num) {
char testing_options[] = "-ksp_type fgmres "
"-pc_type lu "
"-pc_factor_mat_solver_type mumps "
"-snes_type newtonls "
"-snes_linesearch_type basic "
"-snes_max_it 10 "
"-snes_atol 1e-8 "
"-snes_rtol 1e-8 ";
CHKERR PetscOptionsInsertString(PETSC_NULL, testing_options);
}
auto snes = MoFEM::createSNES(m_field.get_comm());
CHKERR SNESSetDM(snes, dm);
SNESConvergedReason snes_reason;
SnesCtx *snes_ctx;
// create snes nonlinear solver
{
CHKERR SNESSetDM(snes, dm);
CHKERR DMMoFEMGetSnesCtx(dm, &snes_ctx);
CHKERR SNESSetFunction(snes, F, SnesRhs, snes_ctx);
CHKERR SNESSetJacobian(snes, Aij, Aij, SnesMat, snes_ctx);
CHKERR SNESSetFromOptions(snes);
}
PostProcVolumeOnRefinedMesh post_proc(m_field);
// Add operators to the elements, starting with some generic
CHKERR post_proc.addFieldValuesPostProc("SPATIAL_POSITION");
CHKERR post_proc.addFieldValuesPostProc("MESH_NODE_POSITIONS");
CHKERR post_proc.addFieldValuesGradientPostProc("SPATIAL_POSITION");
std::map<int, NonlinearElasticElement::BlockData>::iterator sit =
elastic.setOfBlocks.begin();
for (; sit != elastic.setOfBlocks.end(); sit++) {
post_proc.getOpPtrVector().push_back(new PostProcStress(
post_proc.postProcMesh, post_proc.mapGaussPts, "SPATIAL_POSITION",
sit->second, post_proc.commonData));
}
for (int ss = 0; ss != nb_sub_steps; ++ss) {
SimpleContactProblem::LoadScale::lAmbda = (ss + 1.0) / nb_sub_steps;
CHKERR PetscPrintf(PETSC_COMM_WORLD, "Load scale: %6.4e\n",
CHKERR SNESSolve(snes, PETSC_NULL, D);
CHKERR SNESGetConvergedReason(snes, &snes_reason);
int its;
CHKERR SNESGetIterationNumber(snes, &its);
CHKERR PetscPrintf(PETSC_COMM_WORLD, "Number of Newton iterations = %D\n",
its);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
}
// save on mesh
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR DMoFEMMeshToGlobalVector(dm, D, INSERT_VALUES, SCATTER_REVERSE);
PetscPrintf(PETSC_COMM_WORLD, "Loop post proc\n");
CHKERR DMoFEMLoopFiniteElements(dm, "ELASTIC", &post_proc);
elastic.getLoopFeEnergy().snes_ctx = SnesMethod::CTX_SNESNONE;
elastic.getLoopFeEnergy().eNergy = 0;
PetscPrintf(PETSC_COMM_WORLD, "Loop energy\n");
CHKERR DMoFEMLoopFiniteElements(dm, "ELASTIC", &elastic.getLoopFeEnergy());
// Print elastic energy
PetscPrintf(PETSC_COMM_WORLD, "Elastic energy %9.9f\n",
elastic.getLoopFeEnergy().eNergy);
{
string out_file_name;
std::ostringstream stm;
stm << "out"
<< ".h5m";
out_file_name = stm.str();
PetscPrintf(PETSC_COMM_WORLD, "Write file %s\n", out_file_name.c_str());
CHKERR post_proc.postProcMesh.write_file(out_file_name.c_str(), "MOAB",
"PARALLEL=WRITE_PART");
}
// moab_instance
moab::Core mb_post; // create database
moab::Interface &moab_proc = mb_post; // create interface to database
auto common_data_simple_contact = make_contact_common_data();
boost::shared_ptr<SimpleContactProblem::SimpleContactElement>
fe_post_proc_simple_contact;
if (convect_pts == PETSC_TRUE) {
fe_post_proc_simple_contact = make_convective_master_element();
} else {
fe_post_proc_simple_contact = make_contact_element();
}
contact_problem->setContactOperatorsForPostProc(
fe_post_proc_simple_contact, common_data_simple_contact, m_field,
"SPATIAL_POSITION", "LAGMULT", mb_post, alm_flag);
mb_post.delete_mesh();
CHKERR VecZeroEntries(common_data_simple_contact->gaussPtsStateVec);
CHKERR VecZeroEntries(common_data_simple_contact->contactAreaVec);
CHKERR DMoFEMLoopFiniteElements(dm, "CONTACT_ELEM",
fe_post_proc_simple_contact);
std::array<double, 2> nb_gauss_pts;
std::array<double, 2> contact_area;
auto get_contact_data = [&](auto vec, std::array<double, 2> &data) {
CHKERR VecAssemblyBegin(vec);
CHKERR VecAssemblyEnd(vec);
const double *array;
CHKERR VecGetArrayRead(vec, &array);
if (m_field.get_comm_rank() == 0) {
for (int i : {0, 1})
data[i] = array[i];
}
CHKERR VecRestoreArrayRead(vec, &array);
};
CHKERR get_contact_data(common_data_simple_contact->gaussPtsStateVec,
nb_gauss_pts);
CHKERR get_contact_data(common_data_simple_contact->contactAreaVec,
contact_area);
if (m_field.get_comm_rank() == 0) {
PetscPrintf(PETSC_COMM_SELF, "Active gauss pts: %d out of %d\n",
(int)nb_gauss_pts[0], (int)nb_gauss_pts[1]);
PetscPrintf(PETSC_COMM_SELF, "Active contact area: %9.9f out of %9.9f\n",
contact_area[0], contact_area[1]);
}
if (test_num) {
double expected_energy, expected_contact_area;
int expected_nb_gauss_pts;
constexpr double eps = 1e-6;
switch (test_num) {
case EIGHT_CUBE:
expected_energy = 3.0e-04;
expected_contact_area = 3.0;
expected_nb_gauss_pts = 576;
break;
case FOUR_SEASONS:
expected_energy = 1.2e-01;
expected_contact_area = 106.799036701;
expected_nb_gauss_pts = 672;
break;
expected_energy = 3.0e-04;
expected_contact_area = 1.75;
expected_nb_gauss_pts = 336;
break;
expected_energy = 3.125e-04;
expected_contact_area = 0.25;
expected_nb_gauss_pts = 84;
break;
expected_energy = 0.000096432;
expected_contact_area = 0.25;
expected_nb_gauss_pts = 336;
break;
case PLANE_AXI:
expected_energy = 0.000438889;
expected_contact_area = 0.784409608;
expected_nb_gauss_pts = 300;
break;
case ARC_THREE_SURF:
expected_energy = 0.002573411;
expected_contact_area = 2.831455633;
expected_nb_gauss_pts = 228;
break;
expected_energy = 0.000733553;
expected_contact_area = 3.0;
expected_nb_gauss_pts = 144;
break;
expected_energy = 0.000733621;
expected_contact_area = 3.0;
expected_nb_gauss_pts = 144;
break;
case WAVE_2D:
expected_energy = 0.008537863;
expected_contact_area = 0.125;
expected_nb_gauss_pts = 384;
break;
expected_energy = 0.008538894;
expected_contact_area = 0.125;
expected_nb_gauss_pts = 384;
break;
default:
SETERRQ1(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Unknown test number %d", test_num);
}
if (std::abs(elastic.getLoopFeEnergy().eNergy - expected_energy) > eps) {
SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong energy %6.4e != %6.4e", expected_energy,
elastic.getLoopFeEnergy().eNergy);
}
if (m_field.get_comm_rank() == 0) {
if ((int)nb_gauss_pts[0] != expected_nb_gauss_pts) {
SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong number of active gauss pts %d != %d",
expected_nb_gauss_pts, (int)nb_gauss_pts[0]);
}
if (std::abs(contact_area[0] - expected_contact_area) > eps) {
SETERRQ2(PETSC_COMM_SELF, MOFEM_ATOM_TEST_INVALID,
"Wrong active contact area %6.4e != %6.4e",
expected_contact_area, contact_area[0]);
}
}
}
{
string out_file_name;
std::ostringstream strm;
strm << "out_contact_integ_pts"
<< ".h5m";
out_file_name = strm.str();
CHKERR PetscPrintf(PETSC_COMM_WORLD, "Write file %s\n",
out_file_name.c_str());
CHKERR mb_post.write_file(out_file_name.c_str(), "MOAB",
"PARALLEL=WRITE_PART");
}
boost::shared_ptr<PostProcFaceOnRefinedMesh> post_proc_contact_ptr(
CHKERR addHOOpsFace3D("MESH_NODE_POSITIONS", *post_proc_contact_ptr, false,
false);
CHKERR post_proc_contact_ptr->generateReferenceElementMesh();
CHKERR post_proc_contact_ptr->addFieldValuesPostProc("LAGMULT");
CHKERR post_proc_contact_ptr->addFieldValuesPostProc("SPATIAL_POSITION");
CHKERR post_proc_contact_ptr->addFieldValuesPostProc("MESH_NODE_POSITIONS");
CHKERR DMoFEMLoopFiniteElements(dm, "CONTACT_POST_PROC",
post_proc_contact_ptr);
{
string out_file_name;
std::ostringstream stm;
stm << "out_contact"
<< ".h5m";
out_file_name = stm.str();
CHKERR PetscPrintf(PETSC_COMM_WORLD, "Write file %s\n",
out_file_name.c_str());
CHKERR post_proc_contact_ptr->postProcMesh.write_file(
out_file_name.c_str(), "MOAB", "PARALLEL=WRITE_PART");
}
}
// finish work cleaning memory, getting statistics, etc
return 0;
}
MoFEM::UnknownInterface::getInterface
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface reference to pointer of interface.
Definition: UnknownInterface.hpp:93
MoFEM::addHOOpsFace3D
MoFEMErrorCode addHOOpsFace3D(const std::string field, E &e, bool hcurl, bool hdiv)
Definition: HODataOperators.hpp:699
MortarCtestFunctions::LAST_TEST
@ LAST_TEST
Definition: MortarCtestFunctions.hpp:37
MetaNeumannForces::addNeumannBCElements
static MoFEMErrorCode addNeumannBCElements(MoFEM::Interface &m_field, const std::string field_name, const std::string mesh_nodals_positions="MESH_NODE_POSITIONS", Range *intersect_ptr=NULL)
Declare finite element.
Definition: SurfacePressure.cpp:1974
MoFEM::CoreInterface::loop_dofs
virtual MoFEMErrorCode loop_dofs(const Problem *problem_ptr, const std::string &field_name, RowColData rc, DofMethod &method, int lower_rank, int upper_rank, int verb=DEFAULT_VERBOSITY)=0
Make a loop over dofs.
MoFEM::CoreTmp< 0 >
Core (interface) class.
Definition: Core.hpp:82
H1
@ H1
continuous field
Definition: definitions.h:85
EntityHandle
PostProcTemplateOnRefineMesh::postProcMesh
moab::Interface & postProcMesh
Definition: PostProcOnRefMesh.hpp:122
SimpleContactProblem::ConvectSlaveContactElement
Element used to integrate on master surfaces. It convects integration points on slaves,...
Definition: SimpleContact.hpp:206
MoFEM::PrismInterface
Create interface from given surface and insert flat prisms in-between.
Definition: PrismInterface.hpp:23
MoFEM::CoreInterface::get_comm
virtual MPI_Comm & get_comm() const =0
NonlinearElasticElement
structure grouping operators and data used for calculation of nonlinear elastic element
Definition: HookeElement.hpp:27
MoFEM::createSNES
auto createSNES(MPI_Comm comm)
Definition: PetscSmartObj.hpp:255
Mortar.hpp
MoFEM::createSmartDM
DEPRECATED auto createSmartDM(MPI_Comm comm, const std::string dm_type_name)
Definition: PetscSmartObj.hpp:149
MortarCtestFunctions::PUNCH_TOP_AND_MID
@ PUNCH_TOP_AND_MID
Definition: MortarCtestFunctions.hpp:27
MortarCtestFunctions::contact_tests
contact_tests
Definition: MortarCtestFunctions.hpp:24
MoFEM::CoreInterface::get_comm_rank
virtual int get_comm_rank() const =0
SimpleContactProblem::LoadScale::lAmbda
static double lAmbda
Definition: SimpleContact.hpp:37
MoFEM::DMoFEMMeshToLocalVector
PetscErrorCode DMoFEMMeshToLocalVector(DM dm, Vec l, InsertMode mode, ScatterMode scatter_mode)
set local (or ghosted) vector values on mesh for partition only
Definition: DMMoFEM.cpp:523
MoFEM::Projection10NodeCoordsOnField
Projection of edge entities with one mid-node on hierarchical basis.
Definition: Projection10NodeCoordsOnField.hpp:24
MoFEM::CoreTmp< 0 >::Finalize
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition: Core.cpp:112
out_file_name
char out_file_name[255]
Definition: initial_diffusion.cpp:53
MoFEM::CoreInterface::add_ents_to_field_by_type
virtual MoFEMErrorCode add_ents_to_field_by_type(const Range &ents, const EntityType type, const std::string &name, int verb=DEFAULT_VERBOSITY)=0
Add entities to field meshset.
MoFEM::DMMoFEMAddElement
PetscErrorCode DMMoFEMAddElement(DM dm, std::string fe_name)
add element to dm
Definition: DMMoFEM.cpp:497
order
constexpr int order
Definition: dg_projection.cpp:18
MortarCtestFunctions::WAVE_2D_ALM
@ WAVE_2D_ALM
Definition: MortarCtestFunctions.hpp:33
MoFEM::DeprecatedCoreInterface
Deprecated interface functions.
Definition: DeprecatedCoreInterface.hpp:16
MoFEM::Interface
DeprecatedCoreInterface Interface
Definition: Interface.hpp:2010
help
static char help[]
Definition: simple_contact.cpp:30
MortarCtestFunctions::SMILING_FACE
@ SMILING_FACE
Definition: MortarCtestFunctions.hpp:30
CHKERR
#define CHKERR
Inline error check.
Definition: definitions.h:548
MoFEM::MeshsetsManager::printForceSet
MoFEMErrorCode printForceSet() const
print meshsets with force boundary conditions data structure
Definition: MeshsetsManager.cpp:304
main
int main(int argc, char *argv[])
Definition: simple_contact.cpp:33
PostProcStress
Definition: PostProcStresses.hpp:17
MoFEM::CoreInterface::get_moab
virtual moab::Interface & get_moab()=0
MoFEM
implementation of Data Operators for Forces and Sources
Definition: Common.hpp:10
MetaNeumannForces::setMomentumFluxOperators
static MoFEMErrorCode setMomentumFluxOperators(MoFEM::Interface &m_field, boost::ptr_map< std::string, NeumannForcesSurface > &neumann_forces, Vec F, const std::string field_name, const std::string mesh_nodals_positions="MESH_NODE_POSITIONS")
Set operators to finite elements calculating right hand side vector.
Definition: SurfacePressure.cpp:2069
delta
static constexpr double delta
Definition: prism_elements_from_surface.cpp:18
MoFEM::CoreInterface::build_finite_elements
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
MoFEM::SnesMethod::CTX_SNESNONE
@ CTX_SNESNONE
Definition: LoopMethods.hpp:107
Hooke.hpp
Implementation of linear elastic material.
bit
auto bit
set bit
Definition: hanging_node_approx.cpp:75
PostProcTemplateVolumeOnRefinedMesh::commonData
CommonData commonData
Definition: PostProcOnRefMesh.hpp:287
MortarCtestFunctions::T_INTERFACE
@ T_INTERFACE
Definition: MortarCtestFunctions.hpp:26
MoFEM::PrismInterface::splitSides
MoFEMErrorCode splitSides(const EntityHandle meshset, const BitRefLevel &bit, const int msId, const CubitBCType cubit_bc_type, const bool add_interface_entities, const bool recursive=false, int verb=QUIET)
Split nodes and other entities of tetrahedra on both sides of the interface and insert flat prisms in...
Definition: PrismInterface.cpp:519
DM_NO_ELEMENT
#define DM_NO_ELEMENT
Definition: DMMoFEM.hpp:10
MoFEM::DMoFEMMeshToGlobalVector
PetscErrorCode DMoFEMMeshToGlobalVector(DM dm, Vec g, InsertMode mode, ScatterMode scatter_mode)
set ghosted vector values on all existing mesh entities
Definition: DMMoFEM.cpp:535
MoFEM::DMMoFEMGetSnesCtx
PetscErrorCode DMMoFEMGetSnesCtx(DM dm, MoFEM::SnesCtx **snes_ctx)
get MoFEM::SnesCtx data structure
Definition: DMMoFEM.cpp:1094
MoFEM::DMRegister_MoFEM
PetscErrorCode DMRegister_MoFEM(const char sname[])
Register MoFEM problem.
Definition: DMMoFEM.cpp:43
MoFEM::smartCreateDMMatrix
DEPRECATED auto smartCreateDMMatrix(DM dm)
Definition: DMMoFEM.hpp:1092
MoFEM::smartVectorDuplicate
DEPRECATED SmartPetscObj< Vec > smartVectorDuplicate(Vec vec)
Definition: PetscSmartObj.hpp:230
MoFEM::FaceElementForcesAndSourcesCore
Face finite element.
Definition: FaceElementForcesAndSourcesCore.hpp:23
MoFEM::DMMoFEMSNESSetJacobian
PetscErrorCode DMMoFEMSNESSetJacobian(DM dm, const char fe_name[], MoFEM::FEMethod *method, MoFEM::BasicMethod *pre_only, MoFEM::BasicMethod *post_only)
set SNES Jacobian evaluation function
Definition: DMMoFEM.cpp:759
MoFEM::smartCreateDMVector
DEPRECATED auto smartCreateDMVector(DM dm)
Definition: DMMoFEM.hpp:1107
PostProcTemplateVolumeOnRefinedMesh::generateReferenceElementMesh
MoFEMErrorCode generateReferenceElementMesh()
Generate reference mesh on single element.
Definition: PostProcOnRefMesh.hpp:301
PostProcTemplateOnRefineMesh::addFieldValuesGradientPostProc
MoFEMErrorCode addFieldValuesGradientPostProc(const std::string field_name, Vec v=PETSC_NULL)
Add operator to post-process L2 or H1 field gradient.
Definition: PostProcOnRefMesh.hpp:195
MoFEM::DMoFEMPreProcessFiniteElements
PetscErrorCode DMoFEMPreProcessFiniteElements(DM dm, MoFEM::FEMethod *method)
execute finite element method for each element in dm (problem)
Definition: DMMoFEM.cpp:546
NonlinearElasticElement::addElement
MoFEMErrorCode addElement(const std::string element_name, const std::string spatial_position_field_name, const std::string material_position_field_name="MESH_NODE_POSITIONS", const bool ale=false)
Definition: NonLinearElasticElement.cpp:1120
MoFEM::DMMoFEMCreateMoFEM
PetscErrorCode DMMoFEMCreateMoFEM(DM dm, MoFEM::Interface *m_field_ptr, const char problem_name[], const MoFEM::BitRefLevel bit_level, const MoFEM::BitRefLevel bit_mask=MoFEM::BitRefLevel().set())
Must be called by user to set MoFEM data structures.
Definition: DMMoFEM.cpp:114
i
FTensor::Index< 'i', SPACE_DIM > i
Definition: hcurl_divergence_operator_2d.cpp:27
MoFEM::MeshsetsManager::printMaterialsSet
MoFEMErrorCode printMaterialsSet() const
print meshsets with material data structure set on it
Definition: MeshsetsManager.cpp:325
MoFEM::CoreInterface::modify_problem_ref_level_add_bit
virtual MoFEMErrorCode modify_problem_ref_level_add_bit(const std::string &name_problem, const BitRefLevel &bit)=0
add ref level to problem
NonlinearElasticElement::setOperators
MoFEMErrorCode setOperators(const std::string spatial_position_field_name, const std::string material_position_field_name="MESH_NODE_POSITIONS", const bool ale=false, const bool field_disp=false)
Set operators to calculate left hand tangent matrix and right hand residual.
Definition: NonLinearElasticElement.cpp:1153
PostProcFaceOnRefinedMesh
Postprocess on face.
Definition: PostProcOnRefMesh.hpp:1032
mesh_file_name
char mesh_file_name[255]
Definition: mesh_smoothing.cpp:22
MortarCtestFunctions::WAVE_2D
@ WAVE_2D
Definition: MortarCtestFunctions.hpp:32
SimpleContactProblem::LoadScale
Definition: SimpleContact.hpp:35
MoFEM::SnesRhs
PetscErrorCode SnesRhs(SNES snes, Vec x, Vec f, void *ctx)
This is MoFEM implementation for the right hand side (residual vector) evaluation in SNES solver.
Definition: SnesCtx.cpp:27
Range
MetaSpringBC::setSpringOperators
static MoFEMErrorCode setSpringOperators(MoFEM::Interface &m_field, boost::shared_ptr< FaceElementForcesAndSourcesCore > fe_spring_lhs_ptr, boost::shared_ptr< FaceElementForcesAndSourcesCore > fe_spring_rhs_ptr, const std::string field_name, const std::string mesh_nodals_positions="MESH_NODE_POSITIONS", double stiffness_scale=1.)
Implementation of spring element. Set operators to calculate LHS and RHS.
Definition: SpringElement.cpp:1178
MoFEM::CoreTmp< 0 >::Initialize
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition: Core.cpp:72
MF_ZERO
@ MF_ZERO
Definition: definitions.h:111
CATCH_ERRORS
#define CATCH_ERRORS
Catch errors.
Definition: definitions.h:385
PostProcVolumeOnRefinedMesh
Post processing.
Definition: PostProcOnRefMesh.hpp:955
MoFEM::MeshsetsManager::printDisplacementSet
MoFEMErrorCode printDisplacementSet() const
print meshsets with displacement boundary conditions data structure
Definition: MeshsetsManager.cpp:290
_IT_CUBITMESHSETS_BY_SET_TYPE_FOR_LOOP_
#define _IT_CUBITMESHSETS_BY_SET_TYPE_FOR_LOOP_(MESHSET_MANAGER, CUBITBCTYPE, IT)
Iterator that loops over a specific Cubit MeshSet having a particular BC meshset in a moFEM field.
Definition: MeshsetsManager.hpp:71
MoFEM::Core
CoreTmp< 0 > Core
Definition: Core.hpp:1148
std
Definition: enable_if.hpp:5
MoFEM::PrismInterface::getSides
MoFEMErrorCode getSides(const int msId, const CubitBCType cubit_bc_type, const BitRefLevel mesh_bit_level, const bool recursive, int verb=QUIET)
Store tetrahedra from each side of the interface separately in two child meshsets of the parent meshs...
Definition: PrismInterface.cpp:56
PostProcTemplateOnRefineMesh::mapGaussPts
std::vector< EntityHandle > mapGaussPts
Definition: PostProcOnRefMesh.hpp:125
BLOCKSET
@ BLOCKSET
Definition: definitions.h:161
MortarCtestFunctions::EIGHT_CUBE
@ EIGHT_CUBE
Definition: MortarCtestFunctions.hpp:25
eps
static const double eps
Definition: check_base_functions_derivatives_on_tet.cpp:11
NonlinearElasticElement::setOfBlocks
std::map< int, BlockData > setOfBlocks
maps block set id with appropriate BlockData
Definition: NonLinearElasticElement.hpp:100
MoFEM::Exceptions::ierr
static MoFEMErrorCodeGeneric< PetscErrorCode > ierr
Definition: Exceptions.hpp:76
AINSWORTH_LEGENDRE_BASE
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition: definitions.h:60
lambda
static double lambda
Definition: incompressible_elasticity.cpp:199
MoFEM::ForcesAndSourcesCore::getOpPtrVector
boost::ptr_deque< UserDataOperator > & getOpPtrVector()
Use to push back operator for row operator.
Definition: ForcesAndSourcesCore.hpp:83
MOFEM_DATA_INCONSISTENCY
@ MOFEM_DATA_INCONSISTENCY
Definition: definitions.h:31
MoFEM::MeshsetsManager
Interface for managing meshsets containing materials and boundary conditions.
Definition: MeshsetsManager.hpp:104
SimpleContactProblem::ConvectMasterContactElement
Element used to integrate on slave surfaces. It convects integration points on slaves,...
Definition: SimpleContact.hpp:181
MoFEM::CoreInterface::build_fields
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
sdf_hertz_2d_axisymm_plane.d
float d
Definition: sdf_hertz_2d_axisymm_plane.py:4
ReactionDiffusionEquation::D
const double D
diffusivity
Definition: reaction_diffusion.cpp:20
_IT_CUBITMESHSETS_FOR_LOOP_
#define _IT_CUBITMESHSETS_FOR_LOOP_(MESHSET_MANAGER, IT)
Iterator that loops over all the Cubit MeshSets in a moFEM field.
Definition: MeshsetsManager.hpp:34
MoFEM::BitRefManager
Managing BitRefLevels.
Definition: BitRefManager.hpp:21
MoFEM::Types::BitRefLevel
std::bitset< BITREFLEVEL_SIZE > BitRefLevel
Bit structure attached to each entity identifying to what mesh entity is attached.
Definition: Types.hpp:40
MOFEM_ATOM_TEST_INVALID
@ MOFEM_ATOM_TEST_INVALID
Definition: definitions.h:40
MoFEM::CoreInterface::build_adjacencies
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
MoFEM::SnesCtx
Interface for nonlinear (SNES) solver.
Definition: SnesCtx.hpp:13
MortarCtestFunctions::SMILING_FACE_CONVECT
@ SMILING_FACE_CONVECT
Definition: MortarCtestFunctions.hpp:31
MoFEM::CoreInterface::set_field_order
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
MoFEM::SmartPetscObj< DM >
MoFEM::SnesMat
PetscErrorCode SnesMat(SNES snes, Vec x, Mat A, Mat B, void *ctx)
This is MoFEM implementation for the left hand side (tangent matrix) evaluation in SNES solver.
Definition: SnesCtx.cpp:139
MoFEM::CoreInterface::add_problem
virtual MoFEMErrorCode add_problem(const std::string &name, enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add problem.
MoFEM::DMoFEMLoopFiniteElements
PetscErrorCode DMoFEMLoopFiniteElements(DM dm, const char fe_name[], MoFEM::FEMethod *method, CacheTupleWeakPtr cache_ptr=CacheTupleSharedPtr())
Executes FEMethod for finite elements in DM.
Definition: DMMoFEM.cpp:586
MoFEMFunctionReturn
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
Definition: definitions.h:429
MOFEM_NOT_IMPLEMENTED
@ MOFEM_NOT_IMPLEMENTED
Definition: definitions.h:32
MortarCtestFunctions::PUNCH_TOP_ONLY
@ PUNCH_TOP_ONLY
Definition: MortarCtestFunctions.hpp:28
MoFEM::CoreInterface::add_field
virtual MoFEMErrorCode add_field(const std::string name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_EXCL, int verb=DEFAULT_VERBOSITY)=0
Add field.
MetaSpringBC::addSpringElements
static MoFEMErrorCode addSpringElements(MoFEM::Interface &m_field, const std::string field_name, const std::string mesh_nodals_positions="MESH_NODE_POSITIONS")
Declare spring element.
Definition: SpringElement.cpp:1127
NonlinearElasticElement::setBlocks
MoFEMErrorCode setBlocks(boost::shared_ptr< FunctionsToCalculatePiolaKirchhoffI< double >> materialDoublePtr, boost::shared_ptr< FunctionsToCalculatePiolaKirchhoffI< adouble >> materialAdoublePtr)
Definition: NonLinearElasticElement.cpp:1086
MoFEMFunctionBegin
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
Definition: definitions.h:359
F
@ F
Definition: free_surface.cpp:394
Hooke
Hook equation.
Definition: Hooke.hpp:19
MoFEM::DMMoFEMSetIsPartitioned
PetscErrorCode DMMoFEMSetIsPartitioned(DM dm, PetscBool is_partitioned)
Definition: DMMoFEM.cpp:1123
MoFEM::DMMoFEMSNESSetFunction
PetscErrorCode DMMoFEMSNESSetFunction(DM dm, const char fe_name[], MoFEM::FEMethod *method, MoFEM::BasicMethod *pre_only, MoFEM::BasicMethod *post_only)
set SNES residual evaluation function
Definition: DMMoFEM.cpp:718
DirichletSpatialPositionsBc
Set Dirichlet boundary conditions on spatial displacements.
Definition: DirichletBC.hpp:211
PostProcTemplateOnRefineMesh::addFieldValuesPostProc
MoFEMErrorCode addFieldValuesPostProc(const std::string field_name, Vec v=PETSC_NULL)
Add operator to post-process L2, H1, Hdiv, Hcurl field value.
Definition: PostProcOnRefMesh.hpp:153