v0.14.0
Loading...
Searching...
No Matches
mixed_poisson.cpp

MixedPoisson intended to show how to solve mixed formulation of the Dirichlet problem for the Poisson equation using error indicators and p-adaptivity

/**
* \file mixed_poisson.cpp
* \example mixed_poisson.cpp
*
* MixedPoisson intended to show how to solve mixed formulation of the Dirichlet
* problem for the Poisson equation using error indicators and p-adaptivity
*
*/
#include <MoFEM.hpp>
using namespace MoFEM;
static char help[] = "...\n\n";
GAUSS>::OpMixDivTimesScalar<2>;
inline double sqr(double x) { return x * x; }
struct MixedPoisson {
MixedPoisson(MoFEM::Interface &m_field) : mField(m_field) {}
private:
double thetaParam;
int initOrder;
//! [Analytical function]
static double analyticalFunction(const double x, const double y,
const double z) {
return exp(-100. * (sqr(x) + sqr(y))) * cos(M_PI * x) * cos(M_PI * y);
}
//! [Analytical function]
//! [Analytical function gradient]
static VectorDouble analyticalFunctionGrad(const double x, const double y,
const double z) {
VectorDouble res;
res.resize(2);
res[0] = -exp(-100. * (sqr(x) + sqr(y))) *
(200. * x * cos(M_PI * x) + M_PI * sin(M_PI * x)) * cos(M_PI * y);
res[1] = -exp(-100. * (sqr(x) + sqr(y))) *
(200. * y * cos(M_PI * y) + M_PI * sin(M_PI * y)) * cos(M_PI * x);
return res;
}
//! [Analytical function gradient]
//! [Source function]
static double sourceFunction(const double x, const double y, const double z) {
return -exp(-100. * (sqr(x) + sqr(y))) *
(400. * M_PI *
(x * cos(M_PI * y) * sin(M_PI * x) +
y * cos(M_PI * x) * sin(M_PI * y)) +
2. * (20000. * (sqr(x) + sqr(y)) - 200. - sqr(M_PI)) *
cos(M_PI * x) * cos(M_PI * y));
}
//! [Source function]
const char *name, DataType type,
Tag &tag_handle) {
int int_val = 0;
double double_val = 0;
switch (type) {
case MB_TYPE_INTEGER:
CHKERR m_field.get_moab().tag_get_handle(
name, 1, type, tag_handle, MB_TAG_CREAT | MB_TAG_SPARSE, &int_val);
break;
case MB_TYPE_DOUBLE:
CHKERR m_field.get_moab().tag_get_handle(
name, 1, type, tag_handle, MB_TAG_CREAT | MB_TAG_SPARSE, &double_val);
break;
default:
SETERRQ1(PETSC_COMM_SELF, MOFEM_DATA_INCONSISTENCY,
"Wrong data type %d for tag", type);
}
}
MoFEMErrorCode checkError(int iter_num = 0);
MoFEMErrorCode refineOrder(int iter_num = 0);
MoFEMErrorCode outputResults(int iter_num = 0);
struct CommonData {
boost::shared_ptr<VectorDouble> approxVals;
boost::shared_ptr<MatrixDouble> approxValsGrad;
boost::shared_ptr<MatrixDouble> approxFlux;
enum VecElements {
};
};
boost::shared_ptr<CommonData> commonDataPtr;
struct OpError : public DomainEleOp {
boost::shared_ptr<CommonData> commonDataPtr;
OpError(boost::shared_ptr<CommonData> &common_data_ptr,
MoFEM::Interface &m_field)
: DomainEleOp("U", OPROW), commonDataPtr(common_data_ptr),
mField(m_field) {
std::fill(&doEntities[MBVERTEX], &doEntities[MBMAXTYPE], false);
doEntities[MBTRI] = doEntities[MBQUAD] = true;
}
MoFEMErrorCode doWork(int side, EntityType type, EntData &data);
};
};
//! [Run programme]
}
//! [Run programme]
//! [Read mesh]
}
//! [Read mesh]
//! [Set up problem]
int nb_quads = 0;
CHKERR mField.get_moab().get_number_entities_by_type(0, MBQUAD, nb_quads);
if (nb_quads) {
// AINSWORTH_LEGENDRE_BASE is not implemented for HDIV/HCURL space on quads
}
// Note that in 2D case HDIV and HCURL spaces are isomorphic, and therefore
// only base for HCURL has been implemented in 2D. Base vectors for HDIV space
// are be obtained after rotation of HCURL base vectors by a right angle
thetaParam = 0.5;
CHKERR PetscOptionsGetReal(PETSC_NULL, "", "-theta", &thetaParam, PETSC_NULL);
CHKERR PetscOptionsGetReal(PETSC_NULL, "", "-indic_tol", &indicTolerance,
PETSC_NULL);
initOrder = 2;
CHKERR PetscOptionsGetInt(PETSC_NULL, "", "-order", &initOrder, PETSC_NULL);
CHKERR mField.get_moab().get_entities_by_dimension(0, 2, domainEntities);
Tag th_order;
CHKERR getTagHandle(mField, "ORDER", MB_TYPE_INTEGER, th_order);
for (auto ent : domainEntities) {
CHKERR mField.get_moab().tag_set_data(th_order, &ent, 1, &initOrder);
}
}
//! [Set up problem]
//! [Set integration rule]
auto rule = [](int, int, int p) -> int { return 2 * p; };
CHKERR pipeline_mng->setDomainLhsIntegrationRule(rule);
CHKERR pipeline_mng->setDomainRhsIntegrationRule(rule);
}
//! [Set integration rule]
//! [Create common data]
commonDataPtr = boost::make_shared<CommonData>();
PetscInt ghosts[3] = {0, 1, 2};
commonDataPtr->petscVec =
createGhostVector(mField.get_comm(), 3, 3, 0, ghosts);
else
commonDataPtr->petscVec =
createGhostVector(mField.get_comm(), 0, 3, 3, ghosts);
commonDataPtr->approxVals = boost::make_shared<VectorDouble>();
commonDataPtr->approxValsGrad = boost::make_shared<MatrixDouble>();
commonDataPtr->approxFlux = boost::make_shared<MatrixDouble>();
}
//! [Create common data]
//! [Assemble system]
pipeline_mng->getDomainLhsFE().reset();
pipeline_mng->getDomainRhsFE().reset();
pipeline_mng->getOpDomainRhsPipeline().clear();
pipeline_mng->getOpDomainLhsPipeline().clear();
auto beta = [](const double, const double, const double) { return 1; };
pipeline_mng->getOpDomainLhsPipeline().push_back(
new OpHdivHdiv("Q", "Q", beta));
auto unity = []() { return 1; };
pipeline_mng->getOpDomainLhsPipeline().push_back(
new OpHdivU("Q", "U", unity, true));
auto source = [&](const double x, const double y, const double z) {
return -sourceFunction(x, y, z);
};
pipeline_mng->getOpDomainRhsPipeline().push_back(
new OpDomainSource("U", source));
}
//! [Assemble system]
//! [Solve]
auto solver = pipeline_mng->createKSP();
CHKERR KSPSetFromOptions(solver);
CHKERR KSPSetUp(solver);
auto dm = simpleInterface->getDM();
auto D = createDMVector(dm);
auto F = vectorDuplicate(D);
CHKERR VecZeroEntries(D);
CHKERR KSPSolve(solver, F, D);
CHKERR VecGhostUpdateBegin(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(D, INSERT_VALUES, SCATTER_FORWARD);
CHKERR DMoFEMMeshToLocalVector(dm, D, INSERT_VALUES, SCATTER_REVERSE);
}
//! [Solve]
//! [Refine]
Tag th_error_ind, th_order;
CHKERR getTagHandle(mField, "ERROR_INDICATOR", MB_TYPE_DOUBLE, th_error_ind);
CHKERR getTagHandle(mField, "ORDER", MB_TYPE_INTEGER, th_order);
std::vector<Range> refinement_levels;
refinement_levels.resize(iter_num + 1);
for (auto ent : domainEntities) {
double err_indic = 0;
CHKERR mField.get_moab().tag_get_data(th_error_ind, &ent, 1, &err_indic);
int order, new_order;
CHKERR mField.get_moab().tag_get_data(th_order, &ent, 1, &order);
new_order = order + 1;
Range refined_ents;
if (err_indic > thetaParam * maxErrorIndicator) {
refined_ents.insert(ent);
Range adj;
CHKERR mField.get_moab().get_adjacencies(&ent, 1, 1, false, adj,
moab::Interface::UNION);
refined_ents.merge(adj);
refinement_levels[new_order - initOrder].merge(refined_ents);
CHKERR mField.get_moab().tag_set_data(th_order, &ent, 1, &new_order);
}
}
for (int ll = 1; ll < refinement_levels.size(); ll++) {
CHKERR mField.getInterface<CommInterface>()->synchroniseEntities(
refinement_levels[ll]);
if (initOrder + ll > 8) {
MOFEM_LOG("EXAMPLE", Sev::warning)
<< "setting approximation order higher than 8 is not currently "
"supported"
<< endl;
} else {
CHKERR mField.set_field_order(refinement_levels[ll], "U", initOrder + ll);
CHKERR mField.set_field_order(refinement_levels[ll], "Q",
initOrder + ll + 1);
}
}
CHKERR mField.getInterface<CommInterface>()->synchroniseFieldEntities("Q");
CHKERR mField.getInterface<CommInterface>()->synchroniseFieldEntities("U");
mField.getInterface<ProblemsManager>()->buildProblemFromFields = PETSC_TRUE;
}
//! [Refine]
//! [Solve and refine loop]
int iter_num = 1;
while (fabs(indicTolerance) > DBL_EPSILON &&
MOFEM_LOG("EXAMPLE", Sev::inform) << "Refinement iteration " << iter_num;
CHKERR refineOrder(iter_num);
CHKERR checkError(iter_num);
CHKERR outputResults(iter_num);
iter_num++;
if (iter_num > 100)
SETERRQ(PETSC_COMM_SELF, MOFEM_OPERATION_UNSUCCESSFUL,
"Too many refinement iterations");
}
}
//! [Solve and refine loop]
//! [Check error]
pipeline_mng->getDomainLhsFE().reset();
pipeline_mng->getDomainRhsFE().reset();
pipeline_mng->getOpDomainRhsPipeline().clear();
{HDIV, L2});
pipeline_mng->getOpDomainRhsPipeline().push_back(
pipeline_mng->getOpDomainRhsPipeline().push_back(
commonDataPtr->approxValsGrad));
pipeline_mng->getOpDomainRhsPipeline().push_back(
pipeline_mng->getOpDomainRhsPipeline().push_back(
commonDataPtr->maxErrorIndicator = 0;
CHKERR VecZeroEntries(commonDataPtr->petscVec);
CHKERR pipeline_mng->loopFiniteElements();
CHKERR VecAssemblyBegin(commonDataPtr->petscVec);
CHKERR VecAssemblyEnd(commonDataPtr->petscVec);
CHKERR VecGhostUpdateBegin(commonDataPtr->petscVec, INSERT_VALUES,
SCATTER_FORWARD);
CHKERR VecGhostUpdateEnd(commonDataPtr->petscVec, INSERT_VALUES,
SCATTER_FORWARD);
MPI_Allreduce(&commonDataPtr->maxErrorIndicator, &maxErrorIndicator, 1,
MPI_DOUBLE, MPI_MAX, mField.get_comm());
const double *array;
CHKERR VecGetArrayRead(commonDataPtr->petscVec, &array);
MOFEM_LOG("EXAMPLE", Sev::inform)
<< "Global error indicator (max): " << commonDataPtr->maxErrorIndicator;
MOFEM_LOG("EXAMPLE", Sev::inform)
<< "Global error indicator (total): "
<< std::sqrt(array[CommonData::ERROR_INDICATOR_TOTAL]);
MOFEM_LOG("EXAMPLE", Sev::inform)
<< "Global error L2 norm: "
<< std::sqrt(array[CommonData::ERROR_L2_NORM]);
MOFEM_LOG("EXAMPLE", Sev::inform)
<< "Global error H1 seminorm: "
<< std::sqrt(array[CommonData::ERROR_H1_SEMINORM]);
CHKERR VecRestoreArrayRead(commonDataPtr->petscVec, &array);
std::vector<Tag> tag_handles;
tag_handles.resize(4);
CHKERR getTagHandle(mField, "ERROR_L2_NORM", MB_TYPE_DOUBLE, tag_handles[0]);
CHKERR getTagHandle(mField, "ERROR_H1_SEMINORM", MB_TYPE_DOUBLE,
tag_handles[1]);
CHKERR getTagHandle(mField, "ERROR_INDICATOR", MB_TYPE_DOUBLE,
tag_handles[2]);
CHKERR getTagHandle(mField, "ORDER", MB_TYPE_INTEGER, tag_handles[3]);
ParallelComm *pcomm =
ParallelComm::get_pcomm(&mField.get_moab(), MYPCOMM_INDEX);
if (pcomm == NULL)
SETERRQ(PETSC_COMM_WORLD, MOFEM_DATA_INCONSISTENCY, "Communicator not set");
tag_handles.push_back(pcomm->part_tag());
std::ostringstream strm;
strm << "error_" << iter_num << ".h5m";
CHKERR mField.get_moab().write_file(strm.str().c_str(), "MOAB",
"PARALLEL=WRITE_PART", 0, 0,
tag_handles.data(), tag_handles.size());
}
//! [Check error]
//! [Output results]
pipeline_mng->getDomainLhsFE().reset();
auto post_proc_fe = boost::make_shared<PostProcEle>(mField);
CHKERR AddHOOps<2, 2, 2>::add(post_proc_fe->getOpPtrVector(), {HDIV});
auto u_ptr = boost::make_shared<VectorDouble>();
auto flux_ptr = boost::make_shared<MatrixDouble>();
post_proc_fe->getOpPtrVector().push_back(
new OpCalculateScalarFieldValues("U", u_ptr));
post_proc_fe->getOpPtrVector().push_back(
new OpCalculateHVecVectorField<3>("Q", flux_ptr));
post_proc_fe->getOpPtrVector().push_back(
new OpPPMap(post_proc_fe->getPostProcMesh(),
post_proc_fe->getMapGaussPts(),
OpPPMap::DataMapVec{{"U", u_ptr}},
OpPPMap::DataMapMat{{"Q", flux_ptr}},
OpPPMap::DataMapMat{},
OpPPMap::DataMapMat{}
)
);
pipeline_mng->getDomainRhsFE() = post_proc_fe;
CHKERR pipeline_mng->loopFiniteElements();
std::ostringstream strm;
strm << "out_" << iter_num << ".h5m";
CHKERR post_proc_fe->writeFile(strm.str().c_str());
}
//! [Output results]
//! [OpError]
EntData &data) {
const int nb_integration_pts = getGaussPts().size2();
const double area = getMeasure();
auto t_val = getFTensor0FromVec(*(commonDataPtr->approxVals));
auto t_val_grad = getFTensor1FromMat<2>(*(commonDataPtr->approxValsGrad));
auto t_flux = getFTensor1FromMat<3>(*(commonDataPtr->approxFlux));
auto t_coords = getFTensor1CoordsAtGaussPts();
FTensor::Index<'i', 2> i;
double error_l2 = 0;
double error_h1 = 0;
double error_ind = 0;
for (int gg = 0; gg != nb_integration_pts; ++gg) {
const double alpha = t_w * area;
double diff = t_val - MixedPoisson::analyticalFunction(
t_coords(0), t_coords(1), t_coords(2));
error_l2 += alpha * sqr(diff);
t_coords(0), t_coords(1), t_coords(2));
auto t_fun_grad = getFTensor1FromArray<2, 2>(vec);
t_diff(i) = t_val_grad(i) - t_fun_grad(i);
error_h1 += alpha * t_diff(i) * t_diff(i);
t_diff(i) = t_val_grad(i) - t_flux(i);
error_ind += alpha * t_diff(i) * t_diff(i);
++t_w;
++t_val;
++t_val_grad;
++t_flux;
++t_coords;
}
Tag th_error_l2, th_error_h1, th_error_ind;
CHKERR MixedPoisson::getTagHandle(mField, "ERROR_L2_NORM", MB_TYPE_DOUBLE,
th_error_l2);
CHKERR MixedPoisson::getTagHandle(mField, "ERROR_H1_SEMINORM", MB_TYPE_DOUBLE,
th_error_h1);
CHKERR MixedPoisson::getTagHandle(mField, "ERROR_INDICATOR", MB_TYPE_DOUBLE,
th_error_ind);
double error_l2_norm = sqrt(error_l2);
double error_h1_seminorm = sqrt(error_h1);
double error_ind_local = sqrt(error_ind);
CHKERR mField.get_moab().tag_set_data(th_error_l2, &ent, 1, &error_l2_norm);
CHKERR mField.get_moab().tag_set_data(th_error_h1, &ent, 1,
&error_h1_seminorm);
CHKERR mField.get_moab().tag_set_data(th_error_ind, &ent, 1,
&error_ind_local);
if (error_ind_local > commonDataPtr->maxErrorIndicator)
commonDataPtr->maxErrorIndicator = error_ind_local;
constexpr std::array<int, CommonData::LAST_ELEMENT> indices = {
std::array<double, CommonData::LAST_ELEMENT> values;
values[0] = error_l2;
values[1] = error_h1;
values[2] = error_ind;
indices.data(), values.data(), ADD_VALUES);
}
//! [OpError]
int main(int argc, char *argv[]) {
// Initialisation of MoFEM/PETSc and MOAB data structures
const char param_file[] = "param_file.petsc";
// Add logging channel for example problem
auto core_log = logging::core::get();
core_log->add_sink(
LogManager::createSink(LogManager::getStrmWorld(), "EXAMPLE"));
LogManager::setLog("EXAMPLE");
MOFEM_LOG_TAG("EXAMPLE", "MixedPoisson");
try {
//! [Register MoFEM discrete manager in PETSc]
DMType dm_name = "DMMOFEM";
//! [Register MoFEM discrete manager in PETSc
//! [Create MoAB]
moab::Core mb_instance; ///< mesh database
moab::Interface &moab = mb_instance; ///< mesh database interface
//! [Create MoAB]
//! [Create MoFEM]
MoFEM::Core core(moab); ///< finite element database
MoFEM::Interface &m_field = core; ///< finite element database interface
//! [Create MoFEM]
//! [MixedPoisson]
MixedPoisson ex(m_field);
CHKERR ex.runProblem();
//! [MixedPoisson]
}
}
static Index< 'p', 3 > p
std::string param_file
static char help[]
int main()
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpSource< 1, FIELD_DIM > OpDomainSource
ElementsAndOps< SPACE_DIM >::DomainEle DomainEle
#define CATCH_ERRORS
Catch errors.
@ AINSWORTH_LEGENDRE_BASE
Ainsworth Cole (Legendre) approx. base .
Definition definitions.h:60
@ DEMKOWICZ_JACOBI_BASE
Definition definitions.h:66
@ L2
field with C-1 continuity
Definition definitions.h:88
@ HCURL
field with continuous tangents
Definition definitions.h:86
#define MYPCOMM_INDEX
default communicator number PCOMM
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
@ MOFEM_OPERATION_UNSUCCESSFUL
Definition definitions.h:34
@ MOFEM_DATA_INCONSISTENCY
Definition definitions.h:31
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define CHKERR
Inline error check.
constexpr int order
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 1, SPACE_DIM > OpMass
@ F
PetscErrorCode DMoFEMMeshToLocalVector(DM dm, Vec l, InsertMode mode, ScatterMode scatter_mode)
set local (or ghosted) vector values on mesh for partition only
Definition DMMoFEM.cpp:509
PetscErrorCode DMRegister_MoFEM(const char sname[])
Register MoFEM problem.
Definition DMMoFEM.cpp:47
auto createDMVector(DM dm)
Get smart vector from DM.
Definition DMMoFEM.hpp:1003
PetscErrorCode DMSetUp_MoFEM(DM dm)
Definition DMMoFEM.cpp:1267
MoFEMErrorCode loopFiniteElements(SmartPetscObj< DM > dm=nullptr)
Iterate finite elements.
boost::ptr_deque< UserDataOperator > & getOpDomainLhsPipeline()
Get the Op Domain Lhs Pipeline object.
SmartPetscObj< KSP > createKSP(SmartPetscObj< DM > dm=nullptr)
Create KSP (linear) solver.
boost::ptr_deque< UserDataOperator > & getOpDomainRhsPipeline()
Get the Op Domain Rhs Pipeline object.
virtual MoFEMErrorCode build_finite_elements(int verb=DEFAULT_VERBOSITY)=0
Build finite elements.
virtual MoFEMErrorCode build_fields(int verb=DEFAULT_VERBOSITY)=0
virtual MoFEMErrorCode set_field_order(const EntityHandle meshset, const EntityType type, const std::string &name, const ApproximationOrder order, int verb=DEFAULT_VERBOSITY)=0
Set order approximation of the entities in the field.
#define MOFEM_LOG(channel, severity)
Log.
#define MOFEM_LOG_TAG(channel, tag)
Tag channel.
FTensor::Index< 'i', SPACE_DIM > i
double D
double sqr(double x)
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::LinearForm< GAUSS >::OpSource< 1, 1 > OpDomainSource
static char help[]
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 3, 2 > OpHdivHdiv
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMixDivTimesScalar< 2 > OpHdivU
PetscErrorCode MoFEMErrorCode
MoFEM/PETSc error code.
implementation of Data Operators for Forces and Sources
Definition Common.hpp:10
PetscErrorCode PetscOptionsGetInt(PetscOptions *, const char pre[], const char name[], PetscInt *ivalue, PetscBool *set)
PetscErrorCode PetscOptionsGetReal(PetscOptions *, const char pre[], const char name[], PetscReal *dval, PetscBool *set)
SmartPetscObj< Vec > vectorDuplicate(Vec vec)
Create duplicate vector of smart vector.
static auto getFTensor0FromVec(ublas::vector< T, A > &data)
Get tensor rank 0 (scalar) form data vector.
auto createGhostVector(MPI_Comm comm, PetscInt n, PetscInt N, PetscInt nghost, const PetscInt ghosts[])
Create smart ghost vector.
MoFEMErrorCode VecSetValues(Vec V, const EntitiesFieldData::EntData &data, const double *ptr, InsertMode iora)
Assemble PETSc vector.
OpPostProcMapInMoab< SPACE_DIM, SPACE_DIM > OpPPMap
boost::shared_ptr< MatrixDouble > approxFlux
SmartPetscObj< Vec > petscVec
boost::shared_ptr< VectorDouble > approxVals
boost::shared_ptr< MatrixDouble > approxValsGrad
MoFEM::Interface & mField
MoFEMErrorCode doWork(int side, EntityType type, EntData &data)
[Output results]
OpError(boost::shared_ptr< CommonData > &common_data_ptr, MoFEM::Interface &m_field)
boost::shared_ptr< CommonData > commonDataPtr
MoFEMErrorCode solveRefineLoop()
[Refine]
MoFEMErrorCode assembleSystem()
[Create common data]
double indicTolerance
Simple * simpleInterface
MoFEMErrorCode outputResults(int iter_num=0)
[Check error]
double totErrorIndicator
MoFEMErrorCode createCommonData()
[Set integration rule]
MoFEMErrorCode checkError(int iter_num=0)
[Solve and refine loop]
static double sourceFunction(const double x, const double y, const double z)
[Analytical function gradient]
MoFEMErrorCode solveSystem()
[Assemble system]
static VectorDouble analyticalFunctionGrad(const double x, const double y, const double z)
[Analytical function]
double maxErrorIndicator
MoFEM::Interface & mField
boost::shared_ptr< CommonData > commonDataPtr
MixedPoisson(MoFEM::Interface &m_field)
MoFEMErrorCode setIntegrationRules()
[Set up problem]
static double analyticalFunction(const double x, const double y, const double z)
[Analytical function]
MoFEMErrorCode runProblem()
[Run programme]
MoFEMErrorCode setupProblem()
[Read mesh]
static MoFEMErrorCode getTagHandle(MoFEM::Interface &m_field, const char *name, DataType type, Tag &tag_handle)
[Source function]
MoFEMErrorCode refineOrder(int iter_num=0)
[Solve]
MoFEMErrorCode readMesh()
[Run programme]
Add operators pushing bases from local to physical configuration.
Managing BitRefLevels.
virtual moab::Interface & get_moab()=0
virtual MoFEMErrorCode build_adjacencies(const Range &ents, int verb=DEFAULT_VERBOSITY)=0
build adjacencies
virtual MPI_Comm & get_comm() const =0
virtual int get_comm_rank() const =0
Core (interface) class.
Definition Core.hpp:82
static MoFEMErrorCode Initialize(int *argc, char ***args, const char file[], const char help[])
Initializes the MoFEM database PETSc, MOAB and MPI.
Definition Core.cpp:72
static MoFEMErrorCode Finalize()
Checks for options to be called at the conclusion of the program.
Definition Core.cpp:112
std::array< bool, MBMAXTYPE > doEntities
If true operator is executed for entity.
Deprecated interface functions.
Data on single entity (This is passed as argument to DataOperator::doWork)
EntityHandle getFEEntityHandle() const
Return finite element entity handle.
auto getFTensor1CoordsAtGaussPts()
Get coordinates at integration points assuming linear geometry.
auto getFTensor0IntegrationWeight()
Get integration weights.
double getMeasure() const
get measure of element
@ OPROW
operator doWork function is executed on FE rows
MatrixDouble & getGaussPts()
matrix of integration (Gauss) points for Volume Element
Get vector field for H-div approximation.
Get field gradients at integration pts for scalar filed rank 0, i.e. vector field.
Get value at integration points for scalar field.
Post post-proc data at points from hash maps.
PipelineManager interface.
boost::shared_ptr< FEMethod > & getDomainRhsFE()
boost::shared_ptr< FEMethod > & getDomainLhsFE()
MoFEMErrorCode setDomainRhsIntegrationRule(RuleHookFun rule)
MoFEMErrorCode setDomainLhsIntegrationRule(RuleHookFun rule)
Problem manager is used to build and partition problems.
Simple interface for fast problem set-up.
Definition Simple.hpp:27
MoFEMErrorCode loadFile(const std::string options, const std::string mesh_file_name, LoadFileFunc loadFunc=defaultLoadFileFunc)
Load mesh file.
Definition Simple.cpp:194
MoFEMErrorCode addDomainField(const std::string &name, const FieldSpace space, const FieldApproximationBase base, const FieldCoefficientsNumber nb_of_coefficients, const TagType tag_type=MB_TAG_SPARSE, const enum MoFEMTypes bh=MF_ZERO, int verb=-1)
Add field on domain.
Definition Simple.cpp:264
MoFEMErrorCode getOptions()
get options
Definition Simple.cpp:180
MoFEMErrorCode getDM(DM *dm)
Get DM.
Definition Simple.cpp:667
MoFEMErrorCode setFieldOrder(const std::string field_name, const int order, const Range *ents=NULL)
Set field order.
Definition Simple.cpp:473
MoFEMErrorCode setUp(const PetscBool is_partitioned=PETSC_TRUE)
Setup problem.
Definition Simple.cpp:611
BitRefLevel & getBitRefLevel()
Get the BitRefLevel.
Definition Simple.hpp:327
intrusive_ptr for managing petsc objects
MoFEMErrorCode getInterface(IFACE *&iface) const
Get interface refernce to pointer of interface.
FormsIntegrators< DomainEleOp >::Assembly< PETSC >::BiLinearForm< GAUSS >::OpMass< 3, SPACE_DIM > OpHdivHdiv
[Linear elastic problem]